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Abstract

The end-to-end evaluation of quality-of-service (QoS)
properties (e.g., performance, reliability, and security) for
distributed systems has historically occurred late in the
software lifecycle. As a result, many design flaws that af-
fect QoS are not found and fixed in a timely and cost-
effective manner. This article shows how model-driven
engineering—particularly domain-specific modeling lan-
guages coupled with system execution modeling tools—can
enable agile development of distributed systems and facili-
tate continuous system integration testing to improve qual-
ity assurance of QoS properties throughout the software
lifecycle.

Keywords. agile techniques, continuous system inte-
gration, distributed systems, domain-specific modeling lan-
guages, model-driven engineering, system execution mod-
eling tools

1 Introduction

Current trends and challenges. Service-oriented mid-
dleware [7] is increasingly used to develop distributed sys-
tems. This middleware raises the level of abstraction
for software so that distributed system developers can fo-
cus more on application-level concerns (e.g., the “busi-
ness logic”) rather than wrestling with infrastructure-level
concerns (e.g., adaption, context-awareness, and lifecycle
management). Service-oriented middleware also promotes
reuse of business-logic and services across heterogeneous
application domains, which facilitates the development of
larger and more complex systems [2].

As service-oriented distributed systems grow in size and
complexity, it becomes harder to ensure that they con-

form to their specifications throughout the software lifecy-
cle. This difficulty stems in part from the serialized phas-
ing problem [8], where application-level entities are devel-
oped after infrastructure-level entities. Serialized phasing
makes it hard to evaluate end-to-end functional and quality-
of-service (QoS) aspects until late (e.g., at system integra-
tion time) in the software lifecycle.

Agile techniques [6] help address functional aspects
of serialized phasing by continuously validating software
functionality throughout the software lifecycle [9]. For ex-
ample, test-driven development and continuous integration
are agile techniques that validate functional quality by en-
suring software behaves as expected throughout its lifecy-
cle. The benefits of using agile techniques to improve QoS
assurance of service-oriented distributed systems, however,
has not been demonstrated. Developers therefore need new
techniques that help alleviate the complexity of serialized
phasing and enable evaluation of QoS concerns continu-
ously throughout the software lifecycle.

Promising approach → Agility via model-driven en-
gineering (MDE) techniques. MDE [10] is a promising
solution for improving software development of service-
oriented distributed systems. MDE techniques, such as
domain-specific modeling languages (DSMLs) [4], provide
developers with visual representations of abstractions that
capture key domain semantics and constraints. DSMLs also
provide tools that transform models into concrete artifacts
(such as source code or configuration files) that are tedious
and error-prone to create manually using third-generation
languages or not available early enough in the software life-
cycle to evaluate end-to-end QoS properties properly.

This article presents our approach for using DSMLs to
realize agile techniques for evaluating service-oriented dis-
tributed system QoS continuously throughout the software
lifecycle. Our approach is based on system execution mod-



eling methods and tools [11] that enable developers to con-
duct the following agile quality assurance process:

1. Rapidly model behavior and workload of the dis-
tributed system being developed, independent of its
programming language or target environment (e.g., the
underlying networks, operating system(s), and middle-
ware platform(s);

2. Synthesize a customized test system from models, in-
cluding representative source code for the behavior and
workload models and project/workspace files neces-
sary to build the test system in its target environment;

3. Execute the synthesized test system on a representative
target environment testbed to produce realistic empiri-
cal results at scale; and

4. Analyze the test system’s QoS in the context of
domain-specific constraints (such as scalability or end-
to-end response time of synthesized test applications)
to identify performance anti-patterns [11], which are
common system design mistakes that degrade QoS.

We have realized such agile techniques in an open-
source tool called CUTS (www.cs.iupui.edu/CUTS),
which is a language-, operating system-, and middleware-
independent DSML-based system execution modeling tool
for service-oriented distributed systems.

The remainder of this article uses CUTS as a case
study to qualitatively and quantitatively evaluates how
DSML-based system execution modeling tools can sup-
port lightweight and adaptable software development and
QoS assurance processes. Developers can use these
tools to quickly pinpoint performance bottlenecks and
other QoS concerns throughout the lifecycle, rather than
wrestling with low-level test implementations written in
third-generation languages.

2 Assuring QoS in Service-Oriented Dis-
tributed Systems

This section describes how the following CUTS DSMLs
provide key capabilities needed to assure QoS in service-
oriented distributed systems:

• the Component Behavior Modeling Language
(CBML) DSML, which is used to model component
behavior (see Section 2.1);

• the Workload Modeling Language (WML) DSML,
which is used to model component workload (see Sec-
tion 2.2); and

• the Understanding Non-functional Intentions via Test-
ing and Experimentation (UNITE) DSML, which is

use to specify QoS unit tests for performance analy-
sis in distributed systems (see Section 2.3).

Figure 1 shows how CUTS’s DSMLs map to the agile QoS
assurance process described in Section 1. To focus the dis-
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Figure 1. CUTS workflow and domain-
specific modeling languages.

cussion, we describe how these CUTS DSMLs and their
agile techniques are applied to the QED project described
in Sidebar 1.

Sidebar 1: Overview of the QED Project

The QoS-Enabled Dissemination (QED) project [5] is a
large-scale, multi-team collaborative project that focuses
on QoS-enabled service-oriented infrastructure and appli-
cations in the Global Information Grid (GIG) [1]. The GIG
middleware must provide dependable and timely commu-
nication to applications and end-user scenarios that oper-
ate within dynamically changing conditions and environ-
ments, such as wireless ad-hoc networks and/or bandwidth
and resource-constrained situations. The QED middleware
enhancements for the GIG therefore provide timely delivery
of information needed by users in mobile scenarios, tailor-
ing and prioritizing information based on mission needs and
importance, and operating in a manner that is robust to fail-
ures and intermittent communications.

2.1 Capability 1: Capturing Behavior and Work-
load

Service-oriented distributed systems are typically reac-
tive and respond to inputs, such as events or remote method
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invocations. The behavior and workload for such sys-
tems is analogous to a sequence of actions that cause side-
effects, such as changing the value of a variable, querying a
database, or generating output events. DSML-based system
execution modeling tools must therefore capture these prop-
erties to provide a lightweight adaptive process to model
behavior and workload rapidly. These tools must also use
intuitive domain-specific abstractions rather than manually
implementing distributed systems using tedious and error-
prone third-generation programming languages.

We have realized this capability in CUTS by provid-
ing two DSMLs called the Component Behavior Modeling
Language (CBML) and the Workload Modeling Language
(WML) (step 1 in Figure 1) that simplify modeling behav-
ior and workload, respectively. Developers use CBML to
define the behavior of a component, which is software that
encapsulates common services for individual entities of a
service-oriented distributed system using action-to-state se-
quence diagrams. Likewise, WML is used characterize
component workload by parameterizing actions in CBML,
e.g., by setting their values.

In CBML, actions represent operations (such as an appli-
cation component receiving/sending an event or querying a
database) and states represent the current value of the sys-
tems variables. Each action can also cause an effect that
may cause a component’s state to change (such as incre-
menting a component’s event counter variable). In WML,
workload generators (workers) represent objects (such as
C++ or Java classes) that perform predefined behavior and
worker actions represent object methods, i.e., the prede-
fined behavior.

Figure 2 shows a partial behavior and workload model
for a multistage workflow application component used to
evaluate QED’s QoS (see Section 3). In this figure, the be-

Figure 2. Behavior and workload model for a
multistage workflow application component.

havior and workload of the receiveTarget event be-
gins with an input action (i.e., the leftmost square). Af-
ter the initial input action, a sequence of actions (such as
logMessage) and states define the behavior. The com-
ponent has a worker named logger, which reports user-
defined information about the component in the format de-
scribed in Section 2.3.

Since QED developers model behavior and workload us-

ing DSMLs, they can easily adapt their models to test dif-
ferent scenarios, such as changes in QED’s specification or
evaluating different QoS concerns (see Section 3.1). For
example, if QED developers need to add new behavior and
workload to log more/less information about the system,
updating existing CBML and WML models is straightfor-
ward. Moreover, DSMLs shield developers from wrestling
with low-level infrastructure details, which can be time-
consuming and error-prone.

2.2 Capability 2: Generating Realistic Data

Assuring service-oriented distributed systems QoS re-
quires generating realistic data and results, such as the ser-
vice time of components, continuously throughout the soft-
ware lifecycle. DSML-based system execution modeling
tools should therefore produce realistic results and feedback
throughout the software lifecycle. We have realized this ca-
pability in CUTS by leveraging model interpreters to auto-
generate faux application components based on the con-
structed behavior and workload models (see Section 2.1).
These generated faux components conform to the interfaces
of the actual components being developed. This confor-
mance enables the incremental replacement of faux com-
ponents as development evolves—thereby enabling contin-
uous system integration and evaluation of QoS throughout
the software lifecycle.

After QED developers use CBML and WML to model
the behavior and workload of components in the multistage
workflow application (step 1 in Figure 1), they use CUTS
model interpreters to generate source code customized for
their target environment (step 2 in Figure 1). Listing 1
shows a portion of the Java source code for the multistage
workflow model in Figure 2.

1 void r e c e i v e T a r g e t ( T a r g e t E v e n t ev ) {
2 t r y {
3 / / e f f e c t : up da t e t h e e v e n t C o u n t
4 ++ e v e n t C o u n t ;
5
6 i f ( e v e n t C o u n t % p u b l i s h R a t e == 0) {
7 / / g e n e r a t e l o g message
8 t h i s . l o g g e r . logMessage ( LM INFO
9 ins tanceName + ” : Event ” + e v e n t C o u n t +

10 ” : Rece ived a Targe tMio a t ” +
11 System . c u r r e n t T i m e M i l l i s ( ) ) ;
12
13 / / c r e a t e new e v e n t f o r p u b l i s h i n g
14 J b i E v e n t <A u t h o r i z a t i o n T y p e > e v 1 =
15 new J b i E v e n t <A u t h o r i z a t i o n T y p e > (
16 A u t h o r i z a t i o n T y p e . c l a s s ) ;
17
18 e v 1 . s e t P a y l o a d ( 1 0 2 4 ) ;
19 e v 1 . s e t M e t a d a t a ( /∗ metada ta ∗ / ) ;
20
21 / / p u b l i s h e v e n t t o GIG
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22 t h i s . p u b l i s h A u t h o r i z a t i o n .
23 p u b l i s h D a t a ( e v 1 ) ;
24
25 / / g e n e r a t e l o g message
26 t h i s . l o g g e r . logMessage ( /∗ message ∗ / ) ;
27 }
28 }
29 ca tch ( E x c e p t i o n e ) {
30 e . p r i n t S t a c k T r a c e ( ) ;
31 }
32 }

Listing 1. Portion of auto-generated source
code for a multistage workflow application
component.

By using DSML-based system execution modeling tools
and model interpreters, QED developers can implement
a complete test system and evaluate QoS rapidly. Since
CBML and WML are language-, OS-, and middleware-
independent, moreover, existing models can scale and adapt
(see Section 3.2) to different environments. For example,
the multistage workflow application uses the CUTS inter-
preter for the Java-based QED middleware. If QED devel-
opers want to generate source code for different environ-
ments (such as Microsoft.NET or the OMG Data Distri-
bution Service), the their existing models can remain un-
changed and the model interpreters adapt as needed. This
typically involves defining mapping functions from CBM-
L/WML to the target architecture, and manually implement-
ing them in the CUTS model interpreter.

2.3 Capability 3: Collecting and Analyzing Dis-
tributed System Data

Collecting and analyzing QoS metrics in service-
oriented distributed systems is hard since the data to collect
and analyze often changes over time. System structure may
also change over the lifecycle (e.g., by altering a compo-
nent’s interface, increasing the number of replicated compo-
nents, or modifying system deployments by add/removing
connections between components), which can affect how
data is analyzed. Data collection and analysis techniques
must therefore adapt to the volatility in service-oriented dis-
tributed systems.

We have realized this capability in CUTS using the Un-
derstanding Non-Functional Intentions via Testing and Ex-
perimentation (UNITE) DSML to analyze end-to-end QoS
independent of data and system complexity using system
execution traces generated during a test run (step 4 in Fig-
ure 1). Developers use UNITE to define QoS unit tests,
which include:

• a set of log formats that identify data to extract from
system execution traces (such as the event count in the
log message from the logMessage action in Figure 2
and line 8 in Listing 1), which allows UNITE to adapt
to many variants of the same log format when extract-
ing data for QoS metrics;

• a set of causal relations that specify the order of oc-
currence for each log format in the system execution
trace, which allows UNITE to correlate and evaluate
distributed data irrespective of system structure and
complexity; and

• a user-defined evaluation function f (such as the end-
to-end response time of multistage workflow appli-
cation based on variables in log formats for extract-
ing data), which allows UNITE to adapt evaluation of
complex QoS metrics without a priori knowledge of
data complexity and system complexity.

Developers can also define (1) an aggregation function,
such as SUM(f) and AVG(f), that combines multiple oc-
currences of a result and (2) a grouping criteria that parti-
tions results into sets before aggregation. By removing the
aggregation function, developers can view the data trend of
the QoS unit test throughout the system’s execution in its
target environment.

Listing 1 highlights two different log messages (line 8
and line 26) generated by a multistage workflow applica-
tion component. Likewise, Figure 3 shows the correspond-
ing UNITE specification for locating the log messages gen-
erated in Listing 1, which helps evaluate QED QoS (see
Section 3). Equation 1 shows a simple equation for calcu-
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Figure 3. Partial UNITE specification for mul-
tistage workflow application QoS unit test.

lating average service time based on the partial specification
in Figure 3.

f = AV G(LF2.sendT ime− LF1.recvT ime) (1)
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UNITE provides QED developers with a lightweight
technique to assure QoS by automatically extracting met-
rics of interest from system traces. Moreover, UNITE does
not require QED developers to understand distributed sys-
tem composition when analyzing extracted data. For exam-
ple, if QED developers increase the number of components
in the multistage workflow application or want to extract
more/less data from system traces, UNITE can adapt to such
scenarios (see Section 3.2).

3 Evaluating Agile Techniques for QoS As-
surance

This section presents the results of an experiment that
applied CUTS’s DSMLs to the multistage workflow appli-
cation, which is a representative application that runs atop
the GIG middleware, to evaluate the QoS of the QED and
GIG middleware. The multistage workflow application con-
sists of six different component stages, each represented
by a rectangular object shown in Figure 4. The lines con-
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Figure 4. Structural model of the multistage
workflow application.

necting each component represent a communication chan-
nel passing through the QED middleware and GIG infras-
tructure. Each application component contains a CUTS be-
havior and workload model (see Section 2.1) that stresses
different parts of the QED and GIG middleware by increas-
ing network traffic at controlled intervals. Each compo-
nent also contains actions that log metrics for UNITE (see
Section 2.3) to analyze QED and GIG middleware perfor-
mance. Finally, the experiments described below were run
in a representative target environment testbed at ISISlab
(www.isislab.vanderbilt.edu).

3.1 Baselining the GIG Middleware

The response time of the GIG middleware, i.e., one-way
latency for sending/receiving events between 2 components,
is important because it helps determine the existing QoS ca-
pabilities of the GIG middleware and where the QED mid-
dleware can improve QoS relative to the GIG middleware

baseline. In [3] we conducted experiments that measured
the response time of events published by components in
the multistage workflow application using the baseline GIG
middleware, i.e., before integrating QED capabilities.

QED developers were also concerned about scalability
since it affects the GIG middleware’s data capacity while
ensuring timely and reliable communication. It is also an-
other area where QED can improve QoS relative to the base-
line GIG middleware. We therefore conducted scalability
tests on the baseline GIG middleware using a client/server
application model that contains fewer components than the
multistage workflow application in Figure 4.

Figure 5 presents the results of executing a scalability
test of the GIG middleware consisting of 24 subscribers and
12 publishers publishing 2 different event types at different
priorities, and deployed across 3 different hosts to distribute
application workload. As shown in this figure, the base-

Figure 5. Evaluating scalability of GIG mid-
dleware during early stages of development.

line GIG middleware did not differentiate service based on
event or workflow priority. This test therefore confirmed
the QED developer’s new hypothesis based on the earlier
results from [3], and located another area of QoS concern
that QED should address.

3.2 Evaluating the CUTS’s DSMLs

Applying agile techniques in DSML-based system ex-
ecution tools helps reduce the effort of testing service-
oriented distributed system QoS. For example, QED devel-
opers used CUTS’s DSMLs to focus on modeling the be-
havior and workload of the multistage workflow application
followed by the CUTS’s model interpreters to auto-generate
complete test systems. Table 1 compares the number of
elements against the auto-generated source lines of codes
(SLOCS) for the different test systems used by QED devel-
opers to evaluate the QoS of the GIG middleware in Sec-
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tion 3.1. This table highlights how the number of modeling

Table 1. CUTS model elements vs. SLOCS of
auto-generated code.

Application Model Elements SLOCS
Client/Server ∼20 ∼530
Multistage Workflow ∼80 ∼1,760

elements needed to define the test systems for the exper-
iments conducted in Section 3.1 is substantially less than
the SLOC. QED developers thus required less time and ef-
fort generating and running tests in their target environment
than implementing it manually.

CUTS’s agile techniques also alleviates the complex-
ity of analyzing results for the distributed systems using
UNITE (see Section 2.3). Table 2 quantifies the effort
need to analyze results for both client/server and the mul-
tistage workflow application used to evaluate the GIG mid-
dleware. This table shows that the QoS unit test specifi-

Table 2. QoS unit test specification vs. analy-
sis in UNITE.

Application Formats:Groups Messages
Client/Server 2:1 ∼54,660
Multistage Workflow 2:1 ∼236,230

cation is a lightweight process because the number of log
formats and group specifications needed to process log mes-
sages that contain metrics of interest is substantially lower
than the number of log messages collected during a test run
that contain metrics of interest for evaluating the QoS unit
test.Likewise, as system complexity grows, the number of
log formats for the QoS unit test remains constant. As-
suming log formats remain stable, UNITE’s QoS unit test
specification process is thus a one-time effort for software
developers.

4 Concluding Remarks

This article showed how agile techniques realized in
DSML-based system execution modeling tools, such as
CUTS, help improve QoS assurance for service-oriented
distributed systems throughout their lifecycle. By using
DSML-based system execution modeling tools, developers
need not wait until system integration time to perform crit-
ical QoS testing nor must they exert significant effort cre-
ating these tests manually. Based on our results and ex-
perience developing and applying CUTS to the QED/GIG
middleware and its applications we learned the following
lessons:

• DSML-based system execution modeling tools pro-
vide practical solutions that attack the serialized-
phasing development problem. As systems grow in
size and complexity, it becomes essential to alleviate
the effects of serialized phasing. Our experience ap-
plying CUTS to the QED project showed that DSML-
based system execution modeling tools can locate per-
formance bottlenecks during early stages of the soft-
ware lifecycle and readily adapt to different scenarios
with little effort.

• DSML-based system execution modeling tools are
more cost-effective on large-scale, long-running
projects. DSML-based system execution modeling
tools are most effective on large-scale projects with
relatively long software lifecycles, e.g., 1-2 years or
more. Although learning the DSMLs does not require
significant effort, the modeling process is manual and
requires a dedicated set of team members to manage
it. As DSML-based system execution modeling tools
become more automated they will be easier to apply
to projects with shorter software lifecycles and will
not need dedicated team members to manage their pro-
cesses.

• DSML-based system execution modeling tools are
best utilized by system integrators rather than sys-
tem developers since the overhead associated with
learning system execution modeling tool DSMLs is
not comparable to programmers who write source code
for the target architecture. System integrators, how-
ever, often have less domain knowledge about the tar-
get architecture. The effort needed to train system in-
tegrators on the DSMLs therefore has greater payoff in
the long-run, especially since models are technology-,
language-, and architecture-independence and thus can
be reused across different application domains.

• DSML-based system execution modeling tools offer
a cost-effective approach to validating QoS proper-
ties. System integrators are usually responsible for val-
idating QoS properties throughout the software lifecy-
cle. Instead of requiring system integrators to become
knowledgeable of the target architecture, DSMLs en-
able them to remain within their domain knowledge.
Moreover, the DSMLs require less effort to realize in-
tegration tests, which helps shift system integrators ef-
fort to more important tasks, such as exploring the con-
figuration space and its effects on QoS properties.

CUTS and its associated DSMLs are available in open-
source format for download at www.cs.iupui.edu/
CUTS.
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