
On the Need for Careful Definition of and Improved Capabilities in
Quality-of-Service Unit Testing

James H. Hill
Vanderbilt University
Nashville, TN, USA
j.hill@vanderbilt.edu

Abstract

Unit testing traditionally is a process for increasing con-
fidence levels in functional attributes of large-scale dis-
tributed systems throughout the software lifecycle. As large-
scale distributed systems grow larger and more complex, in-
creasing confidence levels in their quality-of-service (QoS)
attributes, such as performance, reliability, and security,
throughout the software lifecycle is becoming increasingly
important. Little work, however, has investigated the chal-
lenges associated with unit testing QoS attributes of large-
scale distributed systems throughout the software lifecycle.

This paper provides two contributions to testing QoS at-
tributes of large-scale distributed systems. First, this paper
defines the meaning unit testing QoS attributes. Secondly,
it discusses challenges associated with unit testing QoS at-
tributes of large-scale distributed. By addressing the chal-
lenges presented in this paper, distributed system develop-
ers will be able to improve QoS assurance of large-scale
distributed systems throughout the software lifecycle.

1 Introduction

Challenges of testing large-scale distributed systems.
Unit testing [6, 8] is the process of evaluating functional at-
tributes, such as build and behavior correctness, of individ-
ual units (or pieces) of a software system, such as methods
of a class or a single component, in isolation. Unit testing
helps increase confidence levels in quality assurance that
the software system functions properly. For example, when
a unit test passes, system developers are more confident that
the software unit under test will function as expected when
integrated into the software system. When a unit test fails,
system developers are more aware that portions of the soft-
ware system that utilize that unit of software may not func-
tion properly. Moreover, when unit testing is integrated with
continuous integration environments, such as CruiseControl

(cruisecontrol.sourceforge.net), this helps in-
crease confidence levels in quality assurance continuously
throughout the software lifecycle.

As large-scale distributed systems grow larger and more
complex (e.g., ultra-large-scale systems [7]) it is becom-
ing particularly important to unit test functional attributes
of such systems continuously throughout the software
lifecycle. In addition to satisfying functional attributes,
large-scale distributed systems must also satisfy quality-
of-service (QoS) attributes (e.g., availability, performance,
reliability, and security). Evaluation of QoS attributes
for large-scale distributed systems throughout the software
lifecycle, however, is hard due in part to the serialized-
phasing development problem [11], where infrastructure-
and application-level software system entities are developed
sequentially and QoS evaluation cannot begin until late in
the software lifecycle, i.e., at system integration time.

System execution modeling (SEM) tools [12] help ad-
dress the serialized-phasing development problem by en-
abling distributed system developers to conduct system in-
tegration test on the target architecture during early stages
of the software lifecycle, i.e., before system integration
time. Although SEM tools facilitate early integration test-
ing, SEM tools do not provide techniques for evaluating
QoS attributes of large-scale distributed systems continu-
ously throughout the software lifecycle. Instead, distributed
system developers must rely on ad hoc techniques, such as
handcrafted cron jobs or execution and analysis scripts, that
must be (re)invented when applied across different applica-
tion domains. Distributed system developers therefore need
new methodologies that will enable them to evaluate and
reason about QoS attributes in a manner similar functional
attributes of large-scale distributed systems.

Solution approach → Unit testing QoS attributes.
Unit testing QoS attributes of large-scale distributed sys-
tems is similar to unit testing functional attributes in that
individual units of a software system are evaluated to in-
crease confidence levels. When unit testing QoS attributes,
however, QoS attributes (such as performance, reliability,

1

and security) of the software unit are evaluated in conjunc-
tion with functional attributes (such as build and behavior
correctness). This enables distributed system developers
to increase confidence levels that the software system will
meet QoS requirements continuously throughout the soft-
ware lifecycle.

Understanding Non-functional Intensions via Testing
and Experimentation (UNITE) [5] presented a methodol-
ogy for enabling distributed system developers to unit test-
ing QoS (i.e., non-functional) attributes of large-scale dis-
tributed systems. Although UNITE enables unit testing
QoS attributes, the actual definition of unit testing QoS at-
tributes is still undefined. This paper therefore presents a
definition for unit testing QoS attributes and its associated
challenges. Moreover, by addressing these challenges, dis-
tributed system developers will have techniques to help im-
prove QoS assurance of large-scale distributed systems.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 introduces a case study of a
representative large-scale distributed system; Section 3 de-
fines and discusses challenges associated with unit testing
QoS attributes; and Section 4 provides concluding remarks.

2 Case Study: The QED Project

The QED project [1] is a multi-organization collabo-
ration designed to improve the Global Information Grid
(GIG) [2] middleware so it can meet QoS requirements
of end-users applications and different operational scenar-
ios. The QED project has been used in prior research, such
as unit testing performance [5] of large-scale component-
based distributed. Figure 1 illustrates QED in the context of
the GIG.

Figure 1. QED and the GIG middleware

To briefly reiterate an overview of the QED project, its
aim is to provide reliable and real-time communication mid-
dleware that is resilient to the dynamically changing con-
ditions of the GIG environment. The QED project is also
scheduled to run for several more years. Since applications
that will utilize the GIG middleware, and in turn QED, will
not be available for several years later, QED developers are

using the CUTS [4] system execution modeling tool per-
form integration testing during early stages of the software
lifecycle and continuously.

QED developers use CUTS by (1) modeling behavior
and workload of applications under development that will
use the GIG and QED middleware; (2) synthesizing a com-
plete test system from constructed models that target the
GIG middleware; and (3) executing the synthesized test sys-
tem on its target architecture and in a representative test en-
vironment. This enables QED developers to evaluate the
improvements QED middleware and its features is provid-
ing GIG middleware during early stages of the software life-
cycle instead of waiting until complete system integration,
i.e., late in the software lifecycle.

In prior research [5], UNITE was developed as a tech-
nique and tool for unit testing QoS attributes. In that re-
search effort, performance of the GIG was the only QoS
attribute evaluated. The QED middleware, however, has to
ensure multiple QoS attributes, such as reliability and se-
curity, when scaling to meet the demands of end-user ap-
plications and operational scenarios. Applying UNITE to
evaluate other QoS attributes, however, revealed the follow-
ing limitations in UNITE and CUTS:

• Limitation 1: Unclear definition of unit testing QoS
attributes. The meaning of unit testing functional
attributes is well-understood by the QED developers.
Little research, however, has investigated the meaning
of unit testing QoS attributes. QED developers there-
fore are unsure of what it actually means to unit test
multiple QoS attributes, i.e., not only performance, in
comparison to unit testing functional attributes.

• Limitation 2: Determining success/failure of QoS
unit test. When evaluating functional attributes of a
large-scale distributed system, its relatively simple the
determine success/failure of a functional unit test. Suc-
cess/failure of a QoS unit test, however, depends on
many factors, such as operating environment and con-
figuration of the large-scale distributed system. QED
developers therefore need better methodologies for de-
termining the success/failure of QoS unit tests.

• Limitation 3: Highlighting multiple views of a QoS
unit test. A single QoS unit test is used to evaluate a
single QoS attribute. QoS unit test, however, are evalu-
ated based on metrics collected while the software sys-
tem is executing in its target environment. This implies
that evaluation of each QoS attribute requires its own
test run. This approach can be an expensive and time-
consuming process. QED developers therefore need
better techniques for extracting different analysis (or
multiple data views) from a QoS unit test.

Due to these limitations, it is hard to QED developers to

2

unit test multiple QoS attributes continuously throughout
the software lifecycle. The remainder of this paper dis-
cusses the aforementioned limitations in more detail and
challenges associated with each limitation.

3 Challenges Associated with Unit Testing
QoS Attributes

This section discusses challenges associated with unit
testing QoS attributes continuously throughout the software
lifecycle.

3.1 Definition of QoS Unit Testing

Overview. Unit testing functional attributes of large-
scale distributed systems is a well-defined process. It tradi-
tionally involves testing functional attributes, such as build
and behavior correctness, for small portions of the system,
such as a method on a class or an input port of a component,
on its target architecture. Unit testing QoS attributes should
have similar meaning as unit testing functional attributes of
large-scale distributed systems. Unit testing QoS attributes,
however, must be performed on both the target architecture
and in a representative environment that will produce real-
istic results.

Challenges. Although unit testing QoS attributes should
have similar meaning as unit testing functional attributes,
achieving similarity is hard. This is due in part to the
fact that side-effects experienced during functional and QoS
testing are different. For example, success/failure of a
class’s method will dictate success/failure of a component
that utilizes that class’s method within its application-logic
during functional unit testing. In contrast, success/failure in
performance of a class’s method may not determine suc-
cess/failure in performance for a component that utilizes
that class’s method.

Because QoS test results are not as deterministic when
compared to functional test results, it is hard define QoS
unit testing in similar terms as functional unit testing. More-
over, QoS attributes are traditionally systemic attributes,
such as end-to-end response time, in large-scale distributed
systems. The granularity of QoS unit test is therefore an-
other challenge because when compared to functional unit
testing, QoS unit testing is a more expensive and time-
consuming, which is impacted by test granularity.

3.2 Success or Failure of a QoS Unit Test

Overview. Section 3.1 discussed how the success/fail-
ure of a QoS unit test do not have similar effects as the suc-
cess/failure of a functional unit test. In order to increase the
level of confidence in large-scale distributed system QoS at-
tributes, however, determining the success/failure of a QoS

unit test is critical because it helps guide development ef-
forts. Distributed system developers, therefore, need im-
proved methodologies that will help them determine the
success/failure of a QoS unit test.

Challenges. In contrast to functional unit testing where
success/failure a functional unit test has a more determin-
istic effect on success/failure another functional unit, QoS
attributes do not have as deterministic effect on other QoS
attributes. For example, increasing the security of a class or
a single component, may have a negative impact on perfor-
mance. Likewise, increasing the fault tolerance of a large-
scale distributed system may have a negative impact on the
systems security because there are more replicas to secure.
Moreover, the result of a QoS unit test depends heavily on
the target execution environment, which must be as realistic
as possible. For example, executing a QoS unit test on a
development machine will yield different results than exe-
cuting the same QoS unit test on a production machine.

In functional unit testing, test oracles [3], which are
mechanisms that evaluate system requirements against
tests, determine the success/failure of functional unit tests.
Test oracles are traditionally extracted from a large-scale
distributed system documentation [10]. In many cases, it is
easier to derive test oracles for functional unit tests because
because functional requirements are a primary concerns and
present in specification and requirement documents. In con-
trast, QoS attributes are taken into consideration after a sys-
tem is completely functional and not meeting vague QoS re-
quirements, such as “the system must have high availability,
performance, and security” [9]—similar to the QED project
for the GIG middleware.

Although test oracles will help determine success/fail-
ure of a QoS unit test, they will not have the same behav-
ior as test oracles for functional unit tests. In QoS test-
ing, success/failure is not as clear as it is in functional unit
testing. Moreover, when dealing with multiple levels of
granularity in QoS unit testing, as discussed in Section 3.1,
test oracles will need to have intelligent reasoning capabil-
ities to cipher through results from multiple levels of gran-
ularity when determining success/failure. Otherwise, dis-
tributed system developers will waste time and effort cor-
recting false-negative results and not be made aware prob-
lems masked by false-positive results.

3.3 Satisfying Multiple Views Simultaneously

Overview. Evaluating a QoS unit test for large-scale dis-
tributed systems requires executing the system on its target
architecture and in its target environment. This enables the
distributed system developer to obtain realistic results and
feedback and help guide their development efforts. Evaluat-
ing a single QoS attribute via a QoS unit test, however, is a
time-consuming task. For example, duration of an QoS unit

3

test that evaluates performance and reliability of a large-
scale distributed system is not known a priori. Distributed
system developers therefore needed improved capabilities
to evaluate multiple QoS attributes (or views) simultane-
ously to reduce this complexity of QoS unit testing.

Challenges. Evaluating a QoS unit test for a large-scale
distributed system requires instrumenting the system to col-
lect the necessary metrics for the evaluation. Instrumenting
a large-scale distributed system, however, can impact col-
lected metrics and different QoS attributes. For example,
the end-to-end response of a large-scaled distributed sys-
tem will be greater when more metrics are collected than
when no metrics are collected. Moreover, instrumenting a
large-scale distributed system to collect metrics for to eval-
uating multiple QoS attributes can have dire effects on the
results because it requires collecting more metrics than what
is needed to evaluate a single QoS attribute.

Once metrics have been collected for a QoS unit test, the
QoS unit must be evaluated. UNITE is capable of evaluat-
ing a single QoS unit test for a single QoS attribute. This,
however, implies that distributed system developers that use
UNITE must execute a large-scale distributed system many
times to evaluate different QoS attributes. Moreover, differ-
ent distributed system developers may want to analyze dif-
ferent views of the metrics, such as a subset of the metrics
occurring between certain time intervals or different QoS at-
tributes from a single execution of the system. Techniques
for data mining and analyzing metrics collected for a QoS
unit test is therefore another challenge in reducing complex-
ity and increasing capabilities of QoS unit testing.

4 Concluding Remarks

As large-scale distributed system increase in size and
complexity, ensuring their QoS attributes continuously
throughout the software lifecycle is becoming more criti-
cal. This will help reduce the amount of time, money, and
effort exerted late in the software lifecycle, i.e., at system
integration time, rectifying problems related to not satisfy-
ing QoS attributes. This paper discussed some of the chal-
lenges related to enabling QoS unit testing, which is aimed
at increase QoS assurance—similar to how functional unit
testing helps increase quality assurance. By addressing the
challenges discussed in this paper and improving QoS unit
testing capabilities, large-scale distributed system develop-
ers will have the necessary tools and techniques to build
larger and more complex distributed systems where QoS at-
tributes are not an afterthought.

References

[1] BBN Technologies Awarded $2.8 Million in AFRL
Funding to Develop System to Link Every Warfighter

to Global Information Grid. BBN Technologies—
Press Releases, www.bbn.com/news and events/
press releases/2008 press releases/pr 21208 qed.

[2] Global Information Grid. The National
Security Agency, www.nsa.gov/ia/industry/
gig.cfm?MenuID=10.3.2.2.

[3] L. Baresi and M. Young. Test oracles. Technical Re-
port CIS-TR-01-02, University of Oregon, Dept. of
Computer and Information Science, Eugene, Oregon,
U.S.A., August 2001.

[4] J. H. Hill, D. C. Schmidt, and J. Slaby. Evaluating
Quality of Service for Enterprise Distributed Real-
time and Embedded Systems. In P. F. Tiako, editor,
Designing Software-Intensive Systems: Methods and
Principles. Idea Group, 2007.

[5] J. H. Hill, H. A. Turner, J. R. Edmondson, and D. C.
Schmidt. Unit Testing Non-functional Concerns of
Component-based Distributed Systems. In Proceed-
ings of the 2nd International Conference on Software
Testing, Verification, and Validation, Denver, Col-
orado, Apr. 2009.

[6] A. Hunt and D. Thomas. Pragmatic Unit Testing in
C# with NUnit. The Pragmatic Programmers, Raleigh,
NC, USA, 2004.

[7] S. E. Institute. Ultra-Large-Scale Systems: Software
Challenge of the Future. Technical report, Carnegie
Mellon University, Pittsburgh, PA, USA, Jun 2006.

[8] V. Massol and T. Husted. JUnit in Action. Manning
Publications Co., Greenwich, CT, USA, 2003.

[9] D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida.
Performance by Design: Computer Capacity Plan-
ning By Example. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2004.

[10] D. Peters. Generating a Test Oracle From Program
Documentation. PhD thesis, McMaster University,
Hamilton, Ontario L8S4L8, 1995.

[11] Rittel, H. and Webber, M. Dilemmas in a General
Theory of Planning. Policy Sciences, pages 155–169,
1973.

[12] C. Smith and L. Williams. Performance Solutions:
A Practical Guide to Creating Responsive, Scalable
Software. Addison-Wesley Professional, Boston, MA,
USA, September 2001.

4

