
Generating Valid Interface Definition Language from Succinct Models

Harold Owens II
Indiana University-Purdue University Indianapolis

Dept. of Computer and Information Science
Indianapolis, IN USA

Email: owensh@cs.iupui.edu

James H. Hill
Indiana University-Purdue University Indianapolis

Dept. of Computer and Information Science
Indianapolis, IN USA

Email: hillj@cs.iupui.edu

Abstract—Source code generation from models (e.g., domain-
specific models) for distributed real-time and embedded (DRE)
systems is intended to alleviate tedious, error-prone, and time-
consume tasks associated with manually hand-crafting the
same code. When generating code from models for DRE system
programming languages that accidentally support circular
dependencies, e.g., the Interface Definition Language (IDL) and
C++, it is necessary to resolve circular dependencies in order to
generate valid and usable code. Moreover, it is important to do
some automatically instead of requiring modelers to construct
models that do not contain any circular dependencies, which
is hard.

This paper provides two contributions to research on source
code generation from models for DRE systems. First, it presents
A-Circle, an algorithm that automatically removes circular
dependencies when generating source code from models for
programming languages that inherently enable circular depen-
dencies. Secondly, this paper quantitatively evaluates A-Circle
when generating CORBA IDL files. The results show that A-
Circle algorithm is able to generate IDL files in linear-time.

I. INTRODUCTION

Model-driven engineering (MDE) techniques [12], such
as domain-specific modeling languages (DSMLs) [7], use
graphical notations to capture abstractions (i.e., models) and
semantics (i.e., constraints) of the target domain. DSMLs
also shield end-users, such as software system developers
and testers, from both inherent and accidental complexities
of the target domain that are typically tedious and error-
prone to complete using either ad hoc techniques (e.g., using
handcrafted scripts to generate, modify, and validate config-
uration files) or manual processes (e.g., defining interface
definitions and deployment descriptors that contain valid
interactions and connections between components).

A critical step in using DSMLs is model interpreta-
tion. During model interpretation, model interpreters trans-
form constructed models into concrete artifacts, such as
source code, XML configuration files, and models for other
DSMLs. For example, in the domain of distributed real-time
and embedded (DRE) systems, DSMLs have been used to
generate a variety of concrete artifacts ranging from dense
XML configuration files [1], [2] to actual source code [6].

Although model interpretation can automate many tasks
when designing and implementing DRE systems, code gen-

eration from models is a hard task depending on the target
programming language. For example, many modern-day
DRE systems are implemented with software architectures
and middleware that use Interface Definition Language
(IDL) [10], [11]. One of the major difficulties of code gener-
ation for IDL, and similar programming languages like C++,
is handling circular dependencies. A circular dependency [8]
is when two different type definitions reference each other
thereby creating a cyclic order. Failure to resolve circular
dependencies in auto-generated source code can result in
source code that fails to compile.

This paper therefore presents experience and results on
using DSMLs for designing and implementing DRE sys-
tems to generate both valid and succinct IDL. The main
contributions of this paper are:

• It presents Automated Circular Dependency Resolver
(A-Circle), which is an algorithm that automatically
removes circular dependencies when generating source
code from models for programming languages that
accidentally allow circular dependencies;

• It presents results for integrating A-Circle with an
interpreter from a representative DSML that generates
IDL source files; and

• It presents an empirical study that evaluates A-Circle
runtime performance in terms of number of generated
IDL files, number of modules processed, and percent-
age of dependencies between declared elements.

• It presents an empirical study that evaluates A-Circle
runtime performance in terms of percentage of circular
dependencies between declared elements.

Finally, runtime analysis of applying A-Circle to a repre-
sentative DSML shows that A-Circle is able to identify and
resolve circular dependencies in O(n) where n is the number
of elements in the IDL model.

Paper organization. The remainder of this paper is
organized as the follows: Section II motivates the need for
A-Circle in the context of a representative DSML for DRE
systems; Section III discusses the design and implementation
of A-Circle; Section IV presents results from applying A-
Circle to the representative DSML; Section V compares A-
Circle to related works; and Section VI provides concluding

remarks and lessons learned.

II. MOTIVATING EXAMPLE: THE PLATFORM
INDEPENDENT COMPONENT MODELING LANGUAGE

The Platform Independent Component Modeling Lan-
guage (PICML) [2] is an open-source DSML designed
and implemented in GME. PICML enables DRE system
stakeholders, e.g., DRE system developers and testers, to
define and implement component-based DRE systems at a
high-level of abstraction without being too bogged down
with tedious and time-consuming low-level details, such as
manually handcrafting and validating IDL files and dense
XML-based deployment descriptors.

PICML accomplishes this task by providing DRE system
stakeholders with intuitive graphical modeling elements that
enable them to handle complex DRE system development
tasks (e.g., multi-aspect visualization of components and
the interactions of their subsystems, component deployment
planning, and hierarchical modeling of component assem-
blies). Lastly, PICML’s model interpreters can transform
constructed models into many different kinds of concrete
artifacts, such as configuration files for analytical tools and
tarballs that can be installed into implementation repositories
that facilitate remote lookup for deployment.

Figure 1. Example interface definition in PICML.

As stated above, one key aspect of PICML is the spec-
ification of a component-based DRE system’s interfaces
and attributes. This is done using graphical elements that
represent IDL constructs, e.g., module, exception, constant
and type definitions. From such models, one of PICML’s
model interpreters is able to generate IDL files. Although
one of PICML’s goals is to generate IDL from constructed
models, this is not a trivial task. For example, Figure 1,
illustrates the interface definition aspect of an example
PICML model. Likewise, Listing 1 highlights invalid code
that can result from the model in Figure 1 based on a naı̈ve
implementation of an IDL generator.

Compilation of the IDL presented in Listing 1, however,
would fail because the IDL definition contains a circular de-

pendency. More specifically, the Person interface provides
a method named birthplace() that returns an interface
of type Place. Likewise, the interface Place provides a
method named owner() that returns an interface of type
Person. Because the method in either interface returns an
interface to the other interface, this is a circular dependency.
The IDL compiler will therefore generate an error because
interface Place isn’t defined before interface Person is
processed.
1 module Noun {
2 i n t e r f a c e P e r son {
3 : : Noun : : P l a c e b i r t h p l a c e () ;
4 } ;
5
6 i n t e r f a c e P l a c e {
7 : : Noun : : P e r s on owner () ;
8 } ;
9 } ;

Listing 1. Invalid IDL code generated from example model above.

Because generation of IDL from PICML models can result
in invalid IDL source code, there are two critical challenges
that must be addressed:

Challenge 1: Identifying and resolving circular depen-
dencies among model elements. As shown in Figure 1 and
Listing 1, it is easy to generate invalid IDL from a model. It
is therefore necessary to ensure that generated IDL is valid
in not only its syntax, but also handles circular dependencies
as well. Moreover, it should handle such concerns in a timely
manner, i.e., use an efficient algorithm that scales well with
the size and complexity of the model. Section III discusses
how A-Circle’s algorithm addresses this challenge.

Challenge 2: Generating valid IDL from succinct
models. The purpose of using a DSML, such as PICML, is
to increase the level-of-abstraction and reduce the problem-
implementation gap [5] for the target domain. In the case
of PICML, it should increase the level-of-abstraction so
DRE system developers are not too concerned with low-
level implementation details. DRE system developers should
only be concerned with modeling their system as accurately
as possible while capturing the essence of the design. It
is therefore the responsibility of the model interpreter to
infer low-level implementation details, such as resolving the
circular dependencies. Section III discusses how A-Circle
resolves this challenge.

This problem is not only contained to IDL, but also to
other programming languages similar to IDL, such as C++,
that want to support code generation from models. The
remainder of this paper therefore discusses how A-Circle
addresses the two challenges outlined above, and enables
generation of valid IDL source code from PICML models.

III. THE DESIGN AND IMPLEMENTATION OF A-CIRCLE

This section discusses the design and implementation of
A-Circle. This section also discusses how A-Circle addresses
the challenges introduced in Section II

A. Design Alternatives for A-Circle

Before discussing the details of A-Circle, it is necessary
to understand the different design alternatives that influence
A-Circle’s design and implementation. This helps highlight
the advantages and disadvantages of each approach, which
may be beneficial for application in other domains.

When designing and implementing A-Circle, the follow-
ing design alternatives were considered:

• Approach 1: Avoid all circular dependencies. Circu-
lar dependencies can be completely avoided by request-
ing the modeler to construct models without circular
dependencies. This can be done by adding a constraint
that checks for circular dependencies and alerting the
modeler if the constraint fails. The advantage of this ap-
proach is implementing the model interpreter is a trivial
process. This is because the model interpreter does not
require intelligence that guarantees the generated IDL
does not contain circular dependencies.
This approach, however, has several disadvantages.
First, it is hard for modelers to construct models that
contain no circular dependencies for large and complex
systems that result in 10’s of 100’s of generated IDL
files. Secondly, this approach places more effort on the
modeler and contradicts the goal of DSMLs reducing
the level-of-complexity for its target domain.

• Approach 2: Manually resolve circular depen-
dencies. Since it can be hard to avoid circular
dependencies—especially in large models—modelers
can be asked to explicitly resolve circular dependencies
themselves in the model. This can be done by providing
modelers with an abstraction for declaring a type before
it is actually defined in the model—similar to forward
declarations in IDL and C++.
The advantage of this approach is that the interpreter
is able to generate valid IDL with the assistance of the
modeler. This can result in a more robust implemen-
tation of the model interpreter. Furthermore, if other
interpreters want to parse the model, then they do not
have to implement a circular dependency resolver.
This main disadvantage of this approach is it adds an
extra level-of-complexity to the DSML. This is because
modelers have to focus on low-level implementation
details. In this case, it is resolving circular dependen-
cies. Finally, this approach is similar to the approach
currently used when manually writing IDL source files
by hand, which is tedious and error-prone.

• Approach 3: Automatically revolve circular depen-
dencies. The final approach is to implement the logic
for resolving circular dependencies inside the model in-
terpreter. The main advantage of this approach is it does
not require developer to posses domain-knowledge for
resolving circular dependencies, which can be a hard
task. The disadvantage of this approach is that each

model interpreter that wants to parse the corresponding
model must implement its own circular dependency
resolver. If not done correctly, each implementation
may have different runtime complexities or function
incorrectly

The purpose of a DSML, such as PICML, is to reduce
complexity of a given domain by increasing the level-of-
abstraction and reducing the amount of tedious and error-
prone process. Because of this fact, A-Circle uses Approach
3 as its design choice when resolving circular dependences
in generated IDL code from PICML models. Approach
3 was selected because it requires less modeling effort
and domain-knowledge from the modeler. The modeler can
therefore focus on modeling the DRE system. Approach 3
provided the necessary functionality for resolving Challenge
1 and Challenge 2 presented in Section II. The remainder
of this section therefore explains in detail how A-Circle
addresses these challenges.

B. The Foundation for Generating Basic IDL from Models

Identifying and resolving circular dependencies is hard
for source code generators, such as the IDL generator in
PICML. A naı̈ve approach for resolving circular dependen-
cies in generated IDL source code is to forward declare all
type definitions, where applicable, as shown in Listing 2.
1 module Noun
2 {
3 i n t e r f a c e I d e a ;
4 i n t e r f a c e P l a c e ;
5 i n t e r f a c e Thing ;
6 i n t e r f a c e P e r son ;
7 } ;
8
9 module Noun {

10 i n t e r f a c e I d e a {
11 : : Noun : : P l a c e l o c a t i o n () ;
12 } ;
13
14 i n t e r f a c e P l a c e {
15 a t t r i b u t e s t r i n g name ;
16 } ;
17
18 i n t e r f a c e Thing {
19 a t t r i b u t e s t r i n g name ;
20 } ;
21
22 i n t e r f a c e P e r s on {
23 : : Noun : : P l a c e b i r t h p l a c e () ;
24 } ;
25 } ;

Listing 2. Example of forward declaring all elements in generated IDL
source code.

Although this approach is feasible, i.e., the generated
IDL source files compiles, it does not generate optimal IDL
source code because it forward declares ::None::Place
and ::Noun::Thing, which are not dependent on any
other definition. Moreover, this approach does not address
Challenge 2 presented in Section II. For example, a model
could contain 1000 elements an have no (circular) de-
pendency between elements. This approach would forward
declare all 1000 model elements, which is unnecessary.

A better approach is for the model interpreter to only
forward declare what needs to be forward declared—similar
to how DRE system developers proceed manually. First, this
requires identifying dependencies between each declaration,
which can be accomplished using depth first search or
breadth first search.

More specifically, a IDL model can be represented as
a directed graph G(V,E) where V is the set of declared
elements in the model (i.e., model elements that represent
type definitions). Likewise, E is set of directed edges
between to vertices in G such that Ei,j ∈ E means Vi ∈ V
depends on Vj ∈ V . In other words, element Vj must be
declared before Vi in the generated IDL file.

Figure 2. Simple IDL model where all type definitions are defined at the
global scope.

!"#$%&'

!()*"'

+,")' -./&0'

Figure 3. Directed graph for the IDL model shown in Figure 2.

For example, Figure 2 illustrates a model where each type
is defined at the global scope (i.e., not within a module,
which is discussed later in this section). The example in
Figure 2 results in the directed graph illustrated in Figure 3.
Using this directed graph, it is possible to generate valid
and succinct IDL source code by topologically sorting the
graph and visiting each node in order. Upon visiting each
node, the correct IDL source code is generated to the target
source file. Listing 3 shows the resulting IDL for using this
approach.
1 i n t e r f a c e Thing {
2 a t t r i b u t e s t r i n g name ;
3 } ;
4
5 i n t e r f a c e P l a c e {
6 a t t r i b u t e s t r i n g name ;

7 } ;
8
9 i n t e r f a c e I d e a {

10 : : Noun : : P l a c e l o c a t i o n () ;
11 } ;
12
13 i n t e r f a c e P e r s on {
14 : : Noun : : P l a c e b i r t h p l a c e () ;
15 } ;

Listing 3. Resulting IDL source code for the model in Figure 2. This
IDL is based on topologically sorting the directed graph in Figure 3 and
processing the nodes in order.

C. Handling Type Definitions in Child Modules

The discussion above applies only to elements declared
within global scope (i.e., not within a module). IDL and
IDL modeling tools allow DRE system developers to define
types within modules, which are analogous to namespaces
in C++ or packages in Java. The approach outlined above
for generating valid IDL, however, does not map to models
where elements are defined in modules. This is because the
dependency graph cannot be treated as a flat space.
1 i n t e r f a c e P l a c e { } ;
2
3 module Noun {
4 i n t e r f a c e I d e a {
5 : : P l a c e l o c a t i o n () ;
6 } ;
7
8 i n t e r f a c e P e r son {
9 : : P l a c e b i r t h p l a c e () ;

10 } ;
11 } ;

Listing 4. Textual model representation of IDL that contains packages.

For example, consider the IDL in Listing 4. As shown in
this listing, there are two elements where element Place
is declared outside of module Noun and element Idea is
declared inside module Noun. The directed graph for this
example would show that element Idea depends on element
Place. The resulting generated IDL could declare Place
and Person outside of module Noun if the hierarchy
is not taken into account. Likewise, the model interpreter
could generate verbose code by wrapping each element in
its on individual scope (shown in Listing 5) which is not
considered optimal code generation.
1 i n t e r f a c e P l a c e { } ;
2
3 module Noun {
4 i n t e r f a c e I d e a {
5 : : P l a c e l o c a t i o n () ;
6 } ;
7 } ;
8
9 module Noun {

10 i n t e r f a c e P e r son {
11 : : P l a c e b i r t h p l a c e () ;
12 } ;
13 } ;

Listing 5. Verbose IDL that can result from models that contain modules.

To ensure optimal code generation for IDL models that
contain modules, it is necessary to preserve the element
hierarchy in such a way that the code generation avoids

what is illustrated in Listing 5. This is achieved by using
directed subgraphs where each module has a subgraph for
its contained model elements, as shown in Figure 4. Each
module is also treated as element in its parent module
(or directed graph). Finally, if a type depends on another
type that is defined in another module, instead of adding a
edge between the two types—as originally done—an edge
is added between the two ancestor elements that are siblings
in the declaration hierarchy.

!" #"$" %"

&" '"

("

Figure 4. Conceptual overview of elements that belong to a subgraph.

For example, as illustrated in Figure 4, X depends on
Y, but X and Y are declared in different subgraphs. This
implies that the module containing Y needs to occur before
the module containing X (i.e., B depends on C). Once the
subgraphs for each module is constructed, it is possible to
generate IDL source code.

Algorithm 1 General algorithm building dependency sub-
graphs from models that contain modules.

procedure BUILDSUBGRAPH(SG,M)
SG: map of all subgraphs
M : current model element
g: current subgragh

for all ei ∈M do
if is module(ei) then

SG[ei]← BuildSubGraph(SG, ei)
add vertex(g, ei)

else if is reference(ei) then
add edge(g, ei)

else
add vertex(g, ei)

end if
end for

return g
end procedure

Algorithm 1 presents the algorithm for constructing the
subgraphs discussed above. As shown in this algorithm, A-
Circle visits each element ei in the current model M . If
the current element is a module, then A-Circle creates a

subgraph for that module and stores it in the map SG that
contains all the subgraphs. A-Circle then adds ei as a vertex
to the current subgraph g.

If the current element ei is a reference (i.e., refers to
another element declared in the global model), then A-
Circle adds an edge between two existing vertices using the
following rules:
• If the parent of the current and referenced element are

siblings, then add a directed edge between the parent
of the current element and the referenced element;

• Otherwise, locate ancestors for the current and refer-
enced element that are siblings and create a directed
edge between the current element’s located ancestor and
the referenced element’s located ancestor.

Finally, A-Circle returns the constructed subgraph g to the
caller. As shown in the algorithm above, A-Circle is able to
complete this process in O(n) time where n is the number
of elements in the complete model.

Algorithm 2 General algorithm generating IDL source files
from models that contain modules.

procedure GENERATEIDL(SG,M)
M : current model element
SG: map of all subgraphs
g: current subgraph

g ← SG[M]
g′ ← topological sort(g)

for all ei ∈ g′ do
GenerateIDLTag(ei)

if is package(ei) then
GenerateIDL(SG, ei)

end if
end for

end procedure

Once all subgraphs are constructed, it is necessary to
generate IDL using them. Algorithm 2 therefore shows A-
Circle’s algorithm for generating valid IDL from models
that contain modules. As shown in this algorithm, A-Circle
first gets the subgraph g for the current model M from the
collection of subgraphs SG. Next, A-Circle topologically
sorts the subgraph to ensure that elements are visit in
order of their dependencies. Finally, for each element ei

in the topologically sorted graph g′, A-Circle generates the
appropriate IDL tag.

Likewise, if the current element is a module, then A-
Circle recursively calls the generate IDL algorithm while
passing the mapping of subgraphs and the current element.
This allows the A-Circle to ensure that scope hierarchy is
preserved during the source code generation. As shown in

Algorithm 2, the runtime complexity of this algorithm is
O(n) where n is the number of vertices in SG.

D. Handling Circular Dependencies in Type Definitions

The previous sections discussed how to generate valid
and optimal IDL for trivial models (i.e., models where
all types are defined with the global scope) and models
that contains modules and dependencies between elements
in different packages, but no circular dependencies. The
final problem to address with generating valid and optimal
IDL source code from succinct models is handling circular
dependencies between elements. This, however, adds another
layer of complexity to the solution because it requires extra
processing of the original model. In the case of IDL, this
means preprocessing the model to determine what type
definitions need to be forward declared.

As previously discussed, a circular dependency occurs
when two model elements are mutually dependent on one
another. More specifically, ei,j ∈ E and ej,i ∈ E. Based
on this definition, one of the edges is considered a back
edge. To resolve the circular dependency, it is necessary
to remove the back edge from the graph. Once the back
edge is remove, the destination node of the back edge is
forward declared. Algorithm 3 gives the general algorithm
for resolving circular dependencies with generating IDL
from models.

Algorithm 3 General algorithm for resolving circular de-
pendencies when generating IDL from models.

procedure RESOLVECIRCULARDEPENDENCY(G, v)
G: current subgraph
v: current vertex
F ← ∅
E ← get edges(G, v)

for all ei ∈ E do
v = dest vertex(ei)
if is back edge(ei) then

G← remove edge(G, ei)
F ← F ∪ v

end if

F ∪ResolveCircularDependency(G, d)
end for

return F
end procedure

Algorithm 3 presents A-Circle’s approach for resolving
circular dependencies when generating IDL source files from
succinct models. As shown in this algorithm, first A-Circle
get all the outgoing edges for the current vertex in the
subgraph. For each edge, A-Circle then checks if the edge is
a back edge. If the current edge is a back edge, then A-Circle

removes the back edge and inserts the destination vertex (or
element) into a list F of forward declarations. This process
continues until all vertices (or elements) in the subgraph are
visited.

Once Algorithm 3 identifies and resolves circular depen-
dencies in the IDL model, the next step is to generate the
IDL source file. This is accomplished using Algorithm 2 in
Section III-C. The only extension is that when each module
(or subgraph) is processed, elements identified for forward
declaration are forward declared. Likewise, if an isolated
module hierarchy must be defined to forward declare an
element, then both algorithms are able to handle this case.

IV. RESULTS

This section empirically evaluates A-Circle’s algorithm
against different IDL models.

A. Experimental Setup

In order to evaluate A-Circle’s algorithm, we implemented
A-Circle into PICML’s IDL generator model interpreter. We
also developed a Perl script named IDLAutoGen to auto-
generate valid IDL files for testing A-Circle. IDLAutoGen
is configurable and accepts the following input parameters:

• File Size (F) – number of logic file types generated;
• Package Size (P) – number of logic modules generated

per file type; and
• Circular Dependency Distribution (D) – percentage

of circular dependencies between declared model ele-
ments.

The IDL files generated by IDLAutoGen are then pro-
cessed by the IDL_to_PICML text-to-model tool that cre-
ates a PICML model from a collection of IDL files. After
the PICML model is created, it is imported into GME and
transformed back to IDL using PICML’s IDL interpreter that
implements A-Circle’s algorithm.

All experiments were performed on an AMD Athlon X2
5400 system configured with Windows XP SP3 and 4GB
RAM. This system’s integrated development environment is
typical for modelers using GME and PICML to generate
distributed application. Table I lists the version information
for the applications used during the experimental evaluation.

Table I
VERSION INFORMATION FOR SOFTWARE USED TO EVALUATE

A-CIRCLE’S ALGORITHM.

Application Version
GME 10.8.18
UDM 3.26

Boost Graph Library 1.43
CoSMIC 0.8.2

Microsoft Visual Studio 2008SP1

B. Experimental Results

Figure 5 illustrates the runtime of A-circle when gen-
erating files that contains one package (P=1) each with
no circular dependencies (D=0%) among model elements.
Likewise, Figure 6 illustrates the runtime of A-circle when
generating packages within a single file (F=1) with no
circular dependencies (D=0%). Finally, Figure 7 illustrates
the runtime of A circle when generating packages that
contains circular dependency based on a circular dependency
distribution (10%–50%) and number of files (F=1) and
number of modules (P=30).

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
s)

Number of Files

File Generation

Generation Time (sec)

Figure 5. A-Circle’s execution time to generate IDL files based on the
number of files in the model.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
s)

Number of Packages

Package Generation

Generation Time (sec)

Figure 6. A-Circle’s execution time to generate IDL files based on the
number of modules in the model.

Figure 5 and Figure 6 show that A-Circle execution time
increases somewhat linearly with respect to the number of
files and packages generated. We believe it is not a com-
pletely linear increase because the experiments where run on
a laptop, and not in an isolated environment. Nonetheless,
the empirical results are inline with the runtime complexity
of A-Circle’s algorithm of O(n). Moreover, these empirical

result confirm our analysis and implementation of A-Circle’s
algorithm.

Figure 7 illustrates the runtime of A circle when gener-
ating packages that contains circular dependency based on
a circular dependency distribution (10%–50%) and number
of files (F=1) and number of modules (P=30).

 36.5

 37

 37.5

 38

 38.5

 39

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Ti
m

e
(s

ec
s)

Distribution

Circular Dependency Distribution

Generation Time (sec)

Figure 7. A-Circle’s execution time to generate IDL files based on the
percentage of circular dependencies between declared elements.

Figure 7, however, shows results different from Figure 5
and Figure 6. As shown in Figure 7, the results are less
linear than the results illustrated in the previous two figures.
Although it can be argued that the experiment’s environment
is playing a part of these results, this is not always the
case. The results in Figure 7 shows a linear progression
with increased circular dependency distribution until circular
dependency distribution 40%. Although, these results still
show a linear equation, we believe that the Perl script
algorithm may generate less circular dependencies at 40%
than what we would expect. This may be the cause for the
slight decrease in runtime at circular dependency distribution
40% compared to circular dependency distribution 30%.

Although it can be argued that the experiment’s environ-
ment is playing a part of these results, this is not always
the case. The results in Figure 7 shows a linear progression
with increased circular dependency distribution until circular
dependency distribution 40%. Although, these results still
show a linear equation, we believe that the Perl script
algorithm may generate less circular dependencies at 40%
than what we would expect. This may be the cause for the
slight decrease in runtime at circular dependency distribution
40% compared to circular dependency distribution 30%.

V. RELATED WORKS

Code generation and optimization can be performed dur-
ing different phases of the model transformation process.
Moreover, such transformations can operate on succinct or
verbose models. For example, Charfi et al. [3] promotes the
idea of model compiler where the model is compiled directly

to binary code. Until such model transformation is possible,
optimizations will need to be performed at different stages
of model transformation. A-Circle’s approach therefore is
an implementation of this need because it main purpose is
to optimize source code generation from succinct models,
thereby reducing transformation effort at last phases of the
transformation process.

Charfi et al. [4] presents work that performs optimized
source code generation from models. The aim of their work
is to optimize source code generation from a model based
on size of the final assembly code generated by a compiler.
A-Circle approach differs in this approach because it aims at
optimizing source code generation from model by reducing
the number of lines of source code in the compilation unit.

Merilinnai et al. [9] also presents work that performs
source code optimizations when generating from a model.
Unlike Charfi’s work, Merilinnai allows the end-user to
select what metrics, such as performance and reliability,
are used to optimize the source code generation. A-Circle’s
approach differs from this work in that the modeler is not
able to select how to optimize the code generation. It is
believed that A-Circle can leverage such concepts when
generating is source code, but there is currently no value
in having such options.

VI. CONCLUDING REMARKS

This paper presented the design and implementation of
the Automated Circular Dependency Resolver (A-Circle). A-
Circle is an algorithm that automatically removes circular
dependencies when generating source code from models
for programming languages that accidentally allow circular
dependencies. In addition, this paper showed how A-Circle
was applied a representative DSML that generates IDL files
from models. Based on experience gained from designing
and implementing A-Circle, the following is a list of future
research directions:

• Generalization of problem. The current implementa-
tion of A-Circle is bound to the PICML metamodel.
This makes it hard to apply A-Circle to other appli-
cation domains system it has to be re-implemented
each time. Future research therefore will focus on
generalizing A-Circle’s implementation for usage in
other application domains.

• Optimize performance based on file characteristic.
The initial results showed A-Circle’s performance for
standard metrics—yet simple metrics. Future research
therefore will develop more complex metrics for evalu-
ating A-Circle’s performance. Moreover, such analysis
will be used to identify characteristics and optimize A-
Circle’s implementation for those characteristics. This
will ensure that A-Circle always performs optimally
regardless of the size and complexity of the parsed
model.

PICML is freely available for download in open-source
format from the following location: www.dre.vanderbilt.edu/
cosmic.

REFERENCES

[1] K. Balasubramanian. Model-Driven Engineering of
Component-based Distributed, Real-time and Embedded Sys-
tems. PhD thesis, Department of Electrical Engineering and
Computer Science, Vanderbilt University, Nashville, Sept.
2007.

[2] K. Balasubramanian, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. C. Schmidt. A Platform-Independent
Component Modeling Language for Distributed Real-Time
and Embedded Systems. In Proceedings of the 11th IEEE
Real Time on Embedded Technology and Applications Sym-
posium (RTAS05), San Francisco, CA, March 2005.

[3] A. Charfi, C. Mraidha, S. Gérard, F. Terrier, and P. Boulet.
Does Code Generation Promote or Prevent Optimizations? In
IEEE Symposium on Object-Oriented Real-Time Distributed
Computing, 2010.

[4] A. Charfi, C. Mraidha, S. Gerard, F. Terrier, and P. Boulet.
Toward Optimized Code Generation Through Model-based
Optimization. In Proceedings of Design, Automation Test in
Europe Conference Exhibition (DATE), 2010.

[5] R. France and B. Rumpe. Model-driven Development of
Complex Software: A Research Roadmap. In 2007 Future
of Software Engineering, pages 37–54, 2007.

[6] J. H. Hill, S. Tambe, and A. Gokhale. Model-driven Engi-
neering for Development-time QoS Validation of Component-
based Software Systems. In Proceedings of 14th Annual IEEE
International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS 07), pages 307–316, Tucson,
AZ, Mar 2007.

[7] Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom,
J. Sprinkle, and G. Karsai. Composing Domain-Specific
Design Environments. Computer, 34(11):44–51, 2001.

[8] K. McMillan. The Circular Dependency Rule. http://santos.
cis.ksu.edu/smv-doc/language/node17.html.

[9] J. Merilinna and T. Raty. A Tool for Quality-Driven Ar-
chitecture Model Transformation. In Proceedings of the 9th
OOPSLA Workshop on Domain-Specific Modeling, 2010.

[10] Object Management Group. The Common Object Request
Broker: Architecture and Specification Version 3.1, Part 1:
CORBA Interfaces, OMG Document formal/2008-01-04 edi-
tion, Jan. 2008.

[11] R. E. Schantz and D. C. Schmidt. Middleware for distributed
systems - evolving the common structure for network-centric
applications, 2001.

[12] D. C. Schmidt. Model-Driven Engineering. IEEE Computer,
39(2):25–31, 2006.

