
Towards Evolutionary Testing of Component-based
DRE System Deployments in the Cloud

T. Manjula Peiris and James H. Hill
Dept. of Computer and Information Science

Indiana University-Purdue University Indianapolis
Indianapolis, IN USA

Email: {tmpeiris, hillj}@cs.iupui.edu

Abstract—Enterprise distributed real-time and embedded
(DRE) systems consists of a large number of software compo-
nents. These software components must be properly deployed
and configured on many different hardware nodes to ensure the
system meets its desired quality-of-service (QoS) requirements,
e.g., end-to-end response time, latency, and throughput. Existing
approaches for identifying candidate deployment and configu-
rations (D&Cs) of enterprise DRE systems, however, are either
simulation or heuristic bin-packing approaches that do not take
into account QoS requirements.

This work-in-progress paper provides three contributions to
deployment and configuring enterprise DRE systems. First, it
presents how evolutionary testing and test clouds can be used to
identify optimal D&Cs. Secondly, it discusses our approach for
evaluating our proposed approach. Our initial results show that
there are two kinds of fitness functions that must be supported
by our evolutionary testing framework: closeness, which is the
relative distance a candidate is from its QoS requirement, and
correctness, which is the the probability of meeting a QoS
requirement.

Keywords-enterprise DRE systems, evolutionary testing, QoS,
components, cloud computing

I. INTRODUCTION

Emerging enterprise distributed real-time and embedded
(DRE) systems are now being developed using component-
based middleware [6]. This is as opposed to low-level mono-
lithic and stove-piped applications. One key advantage of
using high-level middleware abstractions is that it allows
clean separation-of-concerns [6]. For example, deployment
and configurations (D&Cs), application life cycle manage-
ment, and enabling/disabling of non-functional concerns can
be addressed independently of each other. This can therefore
result in highly adaptive and scalable enterprise DRE systems
that are easier to develop and maintain [12].

Although component-based middleware has its advantages,
next-generation enterprise DRE systems are increasing in both
size (e.g., number of software/hardware components) and
complexity (i.e., envisioned operational scenarios and target
execution environments) [8]. One growing challenge asso-
ciated with emerging component-based DRE systems there-
fore is deploying and configuring its components to ensure
that the system meets its desired quality-of-service (QoS)

This work was sponsored in part by the Australian Defense Science and
Technology Organization (DSTO).

requirements, such as end-to-end response time, latency, and
throughput.

Different deployment and configurations (D&Cs) of an
enterprise DRE system, however, will yield different QoS
results. For example, deploying software components that
communicate often on the same hardware component (i.e.,
host) may yield lower end-to-end response times due to low
network latencies than placing such software components on
different hosts where network communication is a necessity.
Likewise, the number of D&Cs increase exponentially as the
number of software and hardware components increase [1]. It
therefore is hard—if not impossible—to evaluate all D&Cs of
emerging DRE systems in a timely manner.

Previous studies have investigated the use of deployment
techniques, e.g., bin-packing, mixed with Evolutionary test-
ing(ET) [4], [11] to search the deployment solution space.
Such studies, however, are primarily analytical- or simulation-
based studies [2]. Moreover, a literature review conducted
by Afzal et al. [15] showcases different research efforts of
applying ET to validating non-functional system properties,
such as end-to-end execution time. To best of the author’s
knowledge, there is no existing research that applies ET to
searching for optimal deployments that meet a given QoS
requirement in a production environment, i.e., on the target
architecture and in the target execution environment, using
large-scale software systems.

This work-in-progress paper therefore discusses our current
results on constructing an environment named eCloud to
support ET of component-based DRE systems in clouds that
emulate production environments [13]. DRE system testers
use eCloud by defining the behavior and workload of each
component in their domain. Testers then specify how to
instrument the application and define a single domain-specific
QoS expression for optimization based on collected metrics.
eCloud then automatically searches the solution space by
evaluating different deployments on its target architecture. Our
current findings show that there are two classes of fitness
functions that eCloud must support for validating enterprise
DRE system QoS properties: closeness, which measures the
relative distance a candidate is from its QoS requirement; and
correctness, which measures the probability of meeting a QoS
requirement.

Paper organization. The remainder of this paper is or-

ganized as follows: Section II-B provides a brief overview
of evolutionary testing; Section III presents the initial design
of eCloud for finding the best component-node mapping for
a given QoS requirement; Section IV presents work related
to the proposed approach and Section V presents concluding
remarks and future research directions.

II. ENABLING TECHNOLOGIES OF ECLOUD

This section gives a brief overview of the technologies used
to realize eCloud.

A. Overview of Evolutionary Testing

Evolutionary Testing (ET) [10] is a search-based software
engineering (SBSE) [5] activity rooted in biological evolu-
tion. In ET, metaheuristic search techniques, e.g., genetic
algorithms, are used to select, or generate, test data. The
process starts with an initial set of test data that is typically
generated randomly. This test data is then evaluated using a
fitness function. The value of the evaluation is used to drive
genetic operations, such as selection, crossover, and mutation,
to generate the next set of test data. Finally, this process
is repeated until a solution that satisfy the testing criterion
is found, or predetermined stopping condition is met (e.g.,
maximum number of iterations).

B. Overview of CUTS and UNITE

CUTS [7] is a system execution modeling tool for con-
ducting system integration test that validate QoS requirements
on the target architecture during early phases of the software
lifecycle. CUTS has following facilities to carry out DRE
system integration testing and QoS analysis:

1) Domain-Specific Modeling Languages (DSMLs) [9] to
model component behavior and workload at high-levels
of abstraction;

2) Generative programming techniques to generate source
code for software components from constructed models
that conform to the target architecture (i.e., look and feel
like the real software components);

3) Emulation techniques to execute the test in realistic
environment, such as Emulab [13], that has the same
characteristics as the production environment; and

4) Facilities for instrumenting the system in its production
environment, and analyzing domain-specific QoS prop-
erties.

CUTS main tool for QoS analysis is UNITE. UNITE uses
system execution traces collected during the system execution
phase for the QoS analysis process. UNITE uses a concept
called log formats, which are templates representing different
log messages in the system execution trace. A log format has
static parts that remain constant among different instances
and variable parts that are populated with different values
in different log messages. UNITE uses dataflow models and
relational database theory to analyze QoS properties. UNITE
also constructs QoS performance graphs that illustrate data
trends throughout the lifetime of the system (i.e., how a QoS
property changes with respect to time).

In addition UNITE uses log format variables to capture
the DRE system state at any point of time during the system
execution. Using such variables, it is possible to describe QoS
requirements as a state-based specification. Listing 1 shows
an example of such a QoS requirement expressed using log
format variables.

Cv : LF1 . cmp name = ” P l a n n e r ”
Ev : (LF2 . recvTime − LF1 . sendTime) < 50

Listing 1. An example QoS expression.

As shown in the above listing Cv specifies the context
where the QoS requirement applies. LF1 and LF2 represents
log formats and cmp_name, recvTime, and sendTime
represents log format variables in their corresponding log
format. In this example, the QoS requirement is applied to
an entity named Planner.
Ev specifies the actual QoS inequality that needs to be

satisfied in the context Cv . In the above example, Ev states
that the event latency need to be less than 50 time units.

III. THE DESIGN AND FUNCTIONALITY OF ECLOUD

This section discusses the current design and functionality
of eCloud.

A. Deployment Model for ET

The main goal of eCloud is to locate optimal deployments
of a component-based DRE system that satisfies a domain-
specific QoS requirement (or expression). In existing work,
White et al. [16] formally define a DRE deployment as a 7-
tuple:

D =< C,N, s(~T), r(~T), p(~T), co(~T), e(~T) >

where C is the set of components and N is the set of nodes.
~T is a vector representing the component-node mapping (i.e.,
ith position of ~T represents ith component and the value of
ith position represents the node). For example, {2, 2, 1} is
an example of ~T for three components and two hosts. In this
example, component 1 and component 2 are mapped to node
2, and component 3 is mapped to node 1.

s(~T) is a function that returns the total number of deadlines
that components will miss. r(~T) is a function that returns the
total number of nodes with over consumed resources. p(~T) is
a function that returns the violations of spatial-attribute based
constraints such as components that are not deployed within
specific distance from a certain point.

co(~T) is a function that returns the number of violations
of component co-locations constraints. Finally, e(~T) is an
objective function that calculates the power consumption of
a specific deployment.

For eCloud’s deployment model that supports ET, we lever-
age White’s model. We, however, reduce the complexity of
the model. For example, we assume there are no resource
constraints and no component co-location constraints, e.g.,
requiring two components to always be collocated. This as-
sumption will eliminate r(~T) and co(~T). Furthermore, p(~T)

is a domain specific constraint defined because of their ap-
plication domain (i.e., satellites). Because we do not have
such constraints, we can safely remove this constraint from
eCloud’s model. e(~T) and s(~T) are fitness functions they have
defined in their domain. In eCloud model we are replacing
those fitness functions with a single fitness function according
to the eCloud requirements.

Based on these observations, eCloud uses a 4-tuple model,
which is defined as follows:

D =< C,N,Q, f(~T) >

where C is the set of components and N is the set of nodes.
~T is a vector representing the component-node mapping as
described in White et al.’s model.

Q—a context aware inequality similar to what is illustrated
in Listing 1. This context aware inequality represents the user
provided QoS requirement.

f(~T) is the fitness function (objective function) which will
be based on Q. Structure of f(~T) depends on whether the
optimization is carried out for correctness or a closeness
situation. Section III-B describes the structure of this fitness
function in detail.

B. Fitness Functions for Evaluating QoS Requirements

In hard real time systems, it is not acceptable to violate a
QoS requirement, such as missing a deadline. When evaluating
QoS requirements of hard real-time systems in eCloud, we
propose a correctness fitness function to evaluate a given
deployment. Here Cv and Ev have the same semantics as
described in Listing 1. The correctness fitness function is
defined as a probability P = |Ev ∪ Cv|/|Cv| where |Cv| is
the number of states satisfying context Cv and |Ev ∪ Cv| is
the number of states satisfying both Ev and Cv together. The
goal of this correctness fitness function is to evolve towards
a candidate deployment that has a fitness value of P = 1, or
close to 1, for the QoS requirement under evaluation.

In soft real-time systems, missing QoS deadlines is accept-
able given that the gap between the achieved QoS value and
the required QoS value is not disturbing system functionality
and systemic QoS. When evaluating QoS requirements of soft
real-time systems, we propose a closeness fitness function that
evaluates how close a particular candidate is to achieving a
QoS requirement. This is opposed to calculating a probability
based on the success or failure.

Cheon et al. [3] proposed an approach for simple object-
oriented programs where simple Java expressions are mapped
into fitness functions. In their approach, a value called branch
distance is calculated. Branch distance specifies how far an
object instance is from satisfying a particular branch statement
in the source code. eCloud adapts this idea when evaluating
soft real-time DRE system QoS properties.

We define the closeness fitness function similar to how
we define the correctness fitness function. Using the example
provided in Listing 1, let E be the expected value of a
particular QoS property. As shown in this example, the value
of the context should be less than 50 time units. Let the value

for this QoS equation in a particular state satisfying Cv is si.
The goal of the ET when using the closeness fitness function
is to maximize the following equation:

n∑
i=1

(E − si)

In the equation above, n is the total number of states satisfying
the context Cv .

C. Application of eCloud

Based on either one of the fitness functions defined above,
the ET process in eCloud will locate the best component-node
mapping for a given QoS requirement. This process will be
carried out via the following steps:

1) A population of ~T is created. Each member in the
population is assigned a random ~T . As described above
the number of items in the vector is equivalent to number
of available components. The positions in the vector will
contain values in the range of 1 to maximum number of
available nodes.

2) Using CUTS, a test for each member in the population
(i.e, deployment) is executed on a testbed.

3) System execution traces are collected using CUTS’s
logging facilities and stored in a database for offline
processing and analysis.

4) CUTS analysis facilities are then used to analyze the
fitness of each ~T according to one of the fitness functions
f(~T) defined above.

5) Based on the fitness value for each member in the
current population, standard evolutionary operators (e.g.,
selection, crossover and mutation) are used to generate
the next population.

6) Steps 2–4 is carried out repeatedly until a the user-
defined stopping criteria is met. Example stopping cri-
teria is maximum number of iterations or reaching a
predetermined fitness value for all the members of a
population.

7) Finally, ~T from the final population with the highest
fitness is selected as the solution.

IV. RELATED WORK

Afzal et al. [15] conducted a survey showcasing different
research efforts on using ET to evaluate non-functional system
properties. In the surveyed literature, ET was applied to
simple applications or in simulation environments. Our work
extends existing research by applying ET to applications in
a production environment. Moreover, our work focuses on a
generalized approach for applying ET to evaluate any QoS
property without a priori knowledge of how to evaluate it in
a cloud (or production environment).

White et al. [16] present a hybrid approach called ScatterD
based on both evolutionary algorithms and bin-packing tech-
niques to identify optimal deployments of a DRE system. Their
main goal, however, is identifying deployment topologies that
minimize power consumption. White et al. also define a second
sub-objective function in which realtime deadline constraints

of a critical path are taken into consideration. Our approach
is similar to ScatterD in that they both apply ET to the
deployment problem. Our approach differs in that (1) we apply
the ET process in a cloud environment (i.e., a production
environment) and (2) the definition process of our fitness
functions is more generalized, and can be applied to different
QoS properties and application contexts.

Wada et al. [14] describes service deployment optimiza-
tion approach for cloud computing environments. Their work
focuses on finding the best D&C for a given Service Level
Agreement (SLA) that defines the QoS requirements for a
particular set of users. Similar to our approach, they have also
analyzed historical QoS data (i.e., system execution traces in
our case) and used Genetic Algorithms (GA). In their model,
multiple instances of same service can be created depending
on the QoS demand. In contrast, our model focuses on finding
out the best configuration for a set of single instances of the
components where we have resource constraints in the DRE
system. We believer, however, that our eCloud can be applied
to the service deployment optimization for cloud computing
environments problem.

V. CONCLUDING REMARKS

This work in progress paper presented initial work on
eCloud, which is an ET based approach for finding the best
deployment satisfying the QoS requirements of a component-
based DRE system in a production environment. Based on our
current work, the following are the lessons learned and future
research directions:

• Determining when to terminate the ET process. Iden-
tifying the correct termination point in an ET process is
an open research problem [15]. Currently, our approach
is to run the process for a certain number of iterations,
or terminating the process when the QoS property under
evaluation reaches a certain value. This criteria may not
always yield correct results. Future research therefore
will focus on identifying the correct termination condition
based on QoS requirement.

• Comparing eCloud approach with other alternatives.
eCloud uses genetic algorithms as the ET process. There
are other heuristic-bases search methods, such as particle
swarm optimization that can be used for ET. Moreover
non-ET approaches like integer programming and linear
programming may be useful when optimizing require-
ments that have QoS trade-offs. Future research will
therefore compare eCloud’s results with the results of
other approaches.

REFERENCES

[1] S. Asaduzzamanand and M. Maheswaran. Towards a decentralized
algorithm for mapping network and computational resources for dis-
tributed data-flow computations. In International Symposium on High
Performance Computing Systems, 2007.

[2] D. Brian, W. Jules, D. C. Schmidt, K. Russell, and P. Jonathan. Deploy-
ment Optimization for Embedded Flight Avionics Systems. CrossTalk
Journal, page To appear, 2011.

[3] Y. Cheon and M. Kim. A specification-based fitness function for
evolutionary testing of object-oriented programs. In Proceedings of
the 8th annual conference on Genetic and evolutionary computation,
GECCO ’06, pages 1953–1954, New York, NY, USA, 2006. ACM.

[4] B. Dougherty, J. White, J. Balasubramanian, C. Thompson, and D. C.
Schmidt. Deployment automation with blitz. In International Conference
on Software Engineering, pages 271–274, 2009.

[5] M. Harman and A. Mansouri. Search based software engineering:
Introduction to the special issue of the ieee transactions on software
engineering. IEEE Transactions on Software Engineering, 36:737–741,
2010.

[6] G. T. Heineman and W. T. Councill, editors. Component-based software
engineering: putting the pieces together. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[7] J. H. Hill, D. C. Schmidt, J. Edmondson, and A. Gokhale. Tools for
Continuously Evaluating Distributed System Qualities. IEEE Software,
July/August 2010.

[8] S. E. Institute. Ultra-Large-Scale Systems: Software Challenge of the
Future. Technical report, Carnegie Mellon University, Pittsburgh, PA,
USA, June 2006.

[9] Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom, J. Sprinkle,
and G. Karsai. Composing Domain-Specific Design Environments.
Computer, 34(11):44–51, 2001.

[10] P. McMinn. Search-based software test data generation: a survey:
Research articles. Softw. Test. Verif. Reliab., 14:105–156, June 2004.

[11] D. D. Niz and R. Rajkumar. Partitioning bin-packing algorithms
for distributed real-time systems. International Journal of Embedded
Systems, 2:196–208, 2006.

[12] U. Rastofer and F. Bellosa. Component-based software engineering for
distributed embedded real-time systems. Iet Software/iee Proceedings -
Software, 148:99–103, 2001.

[13] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network testbed
mapping problem. SIGCOMM Comput. Commun. Rev., 33:65–81, April
2003.

[14] H. Wada, J. Suzuki, Y. Yamano, and K. Oba. Evolutionary deployment
optimization for service-oriented clouds. Softw. Pract. Exper., 41:469–
493, April 2011.

[15] W. Wasif, R. Torkar, and R. Feldt. A Systematic Review of Search-
based Testing for Non-functional System Properties. Information and
Software Technology, 51(6):957–976, 2009.

[16] J. White, B. Dougherty, C. Thompson, and D. C. Schmidt. Scatterd:
Spatial deployment optimization with hybrid heuristic / evolutionary
algorithms. 2011.

