
Towards Real-time Monitoring of DRE Systems
Using Dynamic Binary Instrumentation Middleware

Tanumoy Pati and James H. Hill
Dept. of Computer and Information Science

Indiana University-Purdue University Indianapolis
Indianapolis, IN USA

Email: {tpati, hillj}@cs.iupui.edu

Abstract—Dynamic binary instrumentatation (DBI) frame-
works allow application developers and testers to non-intrusively
collect trace profiles from their applications in production envi-
ronments. The collected trace profiles are then used to analyze
system behavior. Unfortunately, applying a DBI frameworks to
an enterprise distributed real-time and embedded (DRE) systems
is not a trivial process. This is because it is the end-user’s
responsibility to manually collect traces from each host, integrate
the many (disconnect) execution traces, and provide meaningful
analysis. Moreover, it is hard for DRE system developers and
testers to dynamically control DBI frameworks to ensure minimal
impact on quality-of-service (QoS) while collecting enough met-
rics to support analysis—especially for long running enterprise
DRE systems.

This work-in-progress paper therefore provides two contribu-
tions to instrumentation of enterprise DRE systems. First, this
paper discusses how DBI frameworks can be integrated with
dynamic instrumentation middleware to bridge the gap of au-
tonomously collecting trace profiles and metrics from enterprise
DRE systems in a non-intrusive manner. Secondly, this paper
discusses what research questions we plan to address as a result
of integrating DBI frameworks with dynamic instrumentation
middleware.

Keywords-dynamic binary instrumentation, dynamic instru-
mentation middleware, enterprise DRE systems, Pin, OASIS

I. INTRODUCTION

Validating quality-of-service (QoS) properties (e.g., re-
sponse time, latency, accuracy, throughput, synchronization
and scalability) of an enterprise distributed real-time and
embedded (DRE) system in its execution environment entails
monitoring its behavior and resources, such as CPU utilization,
memory usage, event arrival rate, and application heartbeat in
real-time [10]. These metrics of interest are typically captured
in trace profiles that can be used to track function calls
(e.g. system or application- level calls) and examine/change
arguments, examine/monitor resource usage, track application
threads, and locate bugs.

The trace profiles can be generated using either instrusive
or non-instrusive instrumentation techniques. Intrusive instru-
mentation is when the original application’s source code is
modified to collect the necessary metrics [11]. Whereas, non-
intrusive instrumentation is when the original applications
source code is not modified to collect the necessary metrics
(e.g., the binary code is transparently modified) [9]. This is

a major benefit of using non-instrusive instrumentation on a
software application.

One method that supports non-instrusive instrumentation
of software systems, such as enterprise DRE systems, is
dynamic binary instrumentation (DBI). DBI is a general-
purpose technique used to analyze the runtime behavior of a
software/system, thereby facilitating dynamic program analy-
sis tasks, e.g., profiling, performance evaluation, optimization,
and bug detection [13] [7]. Examples of DBI frameworks
include DynamoRIO [2], Valgrind [8], Pin [6], and Dtrace [3].

Although DBI frameworks enable lightweight and non-
instrusive instrumentation of an enterprise DRE system, one
of their major shortcomings is that metrics collected by
such frameworks are typically stored on local disk. In an
enterprise DRE system, it is the responsibility of an end-user
(e.g., developer and tester) to either (1) manually collect the
execution traces from each host in the distributed environment
or (2) implement a proprietary framework to collect execution
traces. The former approach is tedious, time-consuming, and
error prone. The latter approach is a viable choice but as the
framework uses system resources (such as CPU cycles), the
overall performance of the system/application is significantly
altered.

To overcome the shortcomings mentioned above, dynamic
instrumentation middleware [4] can be used to collect metrics
in a distributed environment. This work-in-progress paper
therefore presents our current efforts and approach on realizing
a solution where DBI frameworks are integrated with dy-
namic binary instrumentation middleware, such as the Open-
source Architecture for Software Instrumentation of Systems
(OASIS) [4]. We also discuss research questions we plan on
addressing after integrating DBI frameworks with dynamic
instrumentation middleware. Our believe is that this integration
will enable real-time monitoring of enterprise DRE systems
will enabling autonomous control to minimize impact of
system QoS—especially for long running systems.

Paper organization. The remainder of this paper is orga-
nized as follows: Section II provides an overview of Pin; Sec-
tion III presents a brief overview of OASIS and discusses the
integration approach of Pintools and OASIS; and Section IV
provides the concluding remarks.

II. OVERVIEW OF PIN

Pin is a DBI framework for Linux and Microsoft Window’s
software applications. Pin operates by dynamically inserting
code into arbitrary places in a software application under
instrumentation to collect run-time information. It is an easy-
to-use, portable, transparent, and efficient instrumentation plat-
form [6].

Pin provides a rich application programming interface (API)
that enables end-users to create instrumentation tools called
Pintools in C/C++. The Pintools are basically tools are
domain-specific plugins that accomplish different program
analysis tasks (e.g., profiling, performance evaluation and bug
detection). Pin follows the model of Analysis Tools using
OM [12] (ATOM), which allows the user to easily instrument
and analyze an executable at the instruction level without
any prior knowledge of the underlying instruction set [5].
The architecture independent API of Pin therefore gives it
a high degree of portability and allows Pintools to be source
compatible across all supported instruction sets (e.g., IA-32,
Intel64, IA-64, ARM) and operating systems (e.g., Linux,
Windows, MacOS, FreeBSD) [14].

The just-in-time (JIT) compiler is utilized by Pin to insert
and optimize code, while instrumentation techniques such
as register reallocation, inlining, liveness analysis, and in-
struction scheduling for optimizing jitted code, help Pin to
outperform other instrumentation tools, such as Valgrind and
DynamoRIO [6]. Pin’s efficiency can further be attributed to
its process attaching and detaching technique wherein it first
attaches itself to a process, instruments it and then detaches
from it. This therefore makes Pin suitable for large, long-
running applications because the instrumentation overhead is
considerably low.

Conceptually, a Pintool consists of two components: instru-
mentation routine and analysis routine. Instrumentation rou-
tine is the portion of the Pintool that inspects the application’s
instructions and inserts calls to analysis routines. Analysis
routines is the portion of the Pintool used when the program
executes an instrumented instruction and gathers data (i.e.,
defines the specific actions to perform after the instrumentation
is activated) [1].
1
2 s t a t i c UINT64 i c o u n t = 0 ;
3
4 / / ANALYSIS ROUTINE
5 VOID docoun t () { i c o u n t ++; }
6
7 / / INSTRUMENTATION ROUTINE
8 VOID I n s t r u c t i o n (INS i n s , VOID ∗v) {
9 I N S I n s e r t C a l l (i n s ,

10 IPOINT BEFORE ,
11 (AFUNPTR) docount ,
12 IARG END) ;
13 }
14
15 / / . . .
16
17 / / C a l l e d a t a p p l i c a t i o n e x i t ; w r i t e s r e s u l t s
18 / / t o a l o c a l f i l e on d i s k .
19 VOID F i n i (INT32 code , VOID ∗v) {
20 o f s t r e a m O u t F i l e ;
21 O u t F i l e . open (KnobOutpu tF i l e . Value () . c s t r ()) ;
22 O u t F i l e . s e t f (i o s : : showbase) ;
23 O u t F i l e << ” Count ” << i c o u n t << e n d l ;

24 O u t F i l e . c l o s e () ;
25 }
26
27 i n t main (i n t argc , char ∗ a rgv []) {
28 / / I n i t i a l i z e p i n
29 i f (P I N I n i t (a rgc , a rgv))
30 re turn −1;
31
32 / / R e g i s t e r I n s t r u c t i o n t o be c a l l e d t o
33 / / i n s t r u m e n t i n s t r u c t i o n s
34 I N S A d d I n s t r u m e n t F u n c t i o n (I n s t r u c t i o n , 0) ;
35
36 / / R e g i s t e r F i n i t o be c a l l e d when t h e
37 / / a p p l i c a t i o n e x i t s
38 PIN AddFin iFunc t ion (F i n i , 0) ;
39
40 / / S t a r t t h e program , n e v e r r e t u r n s
41 PIN\ S t a r t P r o g r a m () ;
42
43 re turn 0 ;
44 }

Listing 1. An example Pintool for counting instructions written in C++.

Listing 1 illustrates an example Pintool for counting the in-
structions of an application. As shown in this example, the in-
strumentation routine Instruction() is called every time
a new instruction is encountered. Likewise, the analysis rou-
tine docount() is called each time the Instruction()
method is invoked. When the application exits, the Fini()
method is invoked. At this point, the Pintool writes the results
to an output file on local disk.

Finally, Pin, the Pintool and, the application all share the
same address space while executing. These three entities are
explicitly invoked by the user along with their corresponding
run-time arguments by the following syntax on command line:

%> p i n [P in Args] [− t <P i n t o o l> [P i n t o o l Args]] \
<App> [App a r g s]

The remainder of this work-in-progress paper will discusses
our approach for integrating Pin with the dynamic instru-
mentation middleware named OASIS to support real-time
monitoring of enterprise DRE systems.

III. INTEGRATING PIN WITH OASIS

This section discusses our approach for integrating Pin with
OASIS to provide real-time instrumentation and monitoring
capabilities for enterprise DRE systems.

A. Brief Overview of OASIS

OASIS is a dynamic instrumentation middleware for DRE
systems that facilitates the ability to handle (e.g. collect,
extract, and analyze) metrics without a priori knowledge of
metric details [4]. Figure 1 presents a high-level overview
diagram of OASIS’s architecture. As shown in the figure,
OASIS consists of five major components:
• Software probe, which are autonomous agents that col-

lect both system and application-level metrics, such as the
state of an application, number of events it sends/receives,
and current memory usage.

• Embedded Instrumentation Node (EINode), which is
deployed one per application-context, i.e., a domain of
commonly related data, and receive metrics from the
software probes.

Fig. 1. High-level overview of OASIS’s architecture [4].

• Data Acquisition and Controller (DAC), which is a
persistent database with a fixed location in the target
environment that can be located via a naming service.
It receives data from the EINode and archives it for later
acquisition by the performance analysis tools.

• Test and Evaluation (T&E) Manager, which acts as
the entry point for user applications into OASIS. It accu-
mulates data from the various DAC’s that have registered
with it, along with enabling user applications to alter the
runtime behavior of probes by sending signals to it.

• Performance Analysis Tools, which are domain-specific
tools that interact with OASIS by requesting metrics col-
lected from different software probes via the T&E man-
ager for analyzing the system/application performance.
These tools hold the ability to alter the runtime behavior
of probes via signals, thereby allowing system developers
to control the effects of software instrumentation at
runtime and also minimizing their impact on the overall
system performance.

B. Approach for Integration

Each software probe has a Pintool associated to it, which
performs various tasks such as collecting instruction and basic
blocks count, profiling, cache simulation, trace analysis, and
memory bug checkers. Inside the Pintool code, the software
probe is first initialized, and then it is registered with a
respective EINode. Once this EINode is activated, the software
probe is forced to flush out the most recently collected data
to its hosting EINode, which is ultimately stored in the DAC.

As shown in the Figure 2, we can instantiate multiple
software probes inside the Pintool that sends data to an
EINode. For an enterprise DRE system, the data collected by
the dynamic instrumentation tool (i.e., Pintool) is no longer
collected on the local host’s disk; instead, it is sent to the
DAC with a static location in real-time.
1 s t a t i c s i z e t i c o u n t = 0 ;
2
3 / / OASIS c o n s t r u c t s
4 s t a t i c Pin : : I n s t r u c t i o n C o u n t e r P r o b e I m p l c o u n t p r o b e ;
5 s t a t i c OASIS : : S tandard EINode e i n o d e ;
6
7 / / ANALYSIS ROUTINE
8 VOID docoun t () { c o u n t p r o b e . c o u n t (++ i c o u n t) ; }
9

10 / / INSTRUCTION ROUTINE

11 VOID I n s t r u c t i o n (INS i n s , VOID ∗v) {
12 I N S I n s e r t C a l l (i n s ,
13 IPOINT BEFORE ,
14 (AFUNPTR) docount ,
15 IARG END) ;
16 }
17
18 / / T h i s f u n c t i o n i s c a l l e d when t h e a p p l i c a t i o n e x i t s
19 VOID F i n i (i n t code , VOID ∗v) {
20 / / F lush probe da ta t o DAC.
21 c o u n t p r o b e . f l u s h () ;
22 e i n o d e . d e a c t i v a t e () ;
23 e i n o d e . d e s t r o y () ;
24 }
25
26 i n t main (i n t argc , char ∗ a rgv []) {
27 / / I n i t i a l i z e p i n
28 i f (PIN\ I n i t (a rgc , a rgv))
29 re turn −1;
30
31 I N S A d d I n s t r u m e n t F u n c t i o n (I n s t r u c t i o n , 0) ;
32
33 / / R e g i s t e r F i n i t o be c a l l e d when t h e a p p l i c a t i o n e x i t s
34 PIN AddFin iFunc t ion (F i n i , 0) ;
35
36 / / I n i t i a l i z e OASIS c o n s t r u c t s
37 e i n o d e . i n i t (a rgc , a rgv) ;
38 e i n o d e . r e g i s t e r p r o b e (” Coun te r ” , &c o u n t p r o b e) ;
39
40 / / A c t i v a t i n g t h e EINode
41 e i n o d e . a c t i v a t e () ;
42
43 / / S t a r t t h e program , n e v e r r e t u r n s
44 PIN\ S t a r t P r o g r a m () ;
45
46 re turn 0 ;
47 }

Listing 2. The instruction counter Pintool that has been integrated with
OASIS.

Likewise, Listing 2 shows the instruction counter Pintool
from Listing 1 that has been integrated with OASIS. As shown
in this listing, a probe called Instruction_Counter has
been integrated into the Pintool that collects the instruction
count for a software application. The probe first registers
itself with the EINode and then it is activated. Whenever a
new instruction is encountered, the instrumentation routine
named Instruction() is invoked. This, in turn, calls the
docount() analysis routine, which updates the software
probe’s state. Finally, when the application is exiting, the
software probe is forced to flush out the data to the respective
EINode.

Unlike a traditional Pintool, when a Pintool is integrated
with OASIS the analysis routines do not perform any “real”
analysis. Instead, the data used in the analysis routine is col-
lected and stored in the DAC. Instead, OASIS’s performance
analysis tools are responsible for performing the analysis that
was once done by the Pintool. This therefore help decouple
the instrumentation and analysis aspect of a DBI framework.
Finally, because the software probes can be controlled re-
motely, it is possible to dynamically turn on/off different
instrumentation points that have been tied to a software probe
in real-time.

IV. CONCLUDING REMARKS

This work-in-progress paper presented our approach for
integrating DBI frameworks, such as Pin, with dynamic instru-
mentation middleware, such as OASIS. This will enable DRE
systems and testers to non-intrusively instrument and monitor

Fig. 2. A Pintool integrated with three software probes that communicate with the OASIS middleware.

enterprise DRE systems in real-time. Based on this integration,
we will be able to investigate research questions related to
patterns of software instrumentation and real-time and adaptive
monitoring while minimizing impact on overall QoS. We will
investigate these research questions in the context of real-
time enterprise DRE systems from the domain of shipboard
computing.

REFERENCES

[1] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazel-
wood, A. Jaleel, C.-K. Luk, G. Lyons, H. Patil, and A. Tal. Analyzing
parallel programs with pin. Computer, 43(3):34–41, 2010.

[2] D. Bruening, T. Garnett, and S. Amarasinghe. An Infrastructure for
Adaptive Dynamic Optimization. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and
runtime optimization, CGO ’03, pages 265–275, Washington, DC, USA,
2003. IEEE Computer Society.

[3] B. Cantrill, M. Shapiro, and A. Leventhal. Dynamic instrumentation of
production systems. In 6th Symposium on Operating Systems Design
and Implementation 2004, 2004.

[4] J. H. Hill, H. Sutherland, P. Staudinger, T. Silveria, D. C. Schmidt, J. M.
Slaby, and N. Visnevski. OASIS: An Architecture for Dynamic Instru-
mentation of Enterprise Distributed Real-time and Embedded Systems.
International Journal of Computer Systems Science and Engineering,
Special Issue: Real-time Systems, April 2011.

[5] Intel. Pin manual. http://www.pintool.org/docs/41150/Pin/html/.
[6] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. SIGPLAN
Notes, 40:190–200, June 2005.

[7] N. Nethercote. Dynamic Binary Analysis and Instrumentation. PhD
thesis, University of Cambridge, United Kingdom, November 2004.

[8] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In SIGPLAN Not., pages 89–100, June
2007.

[9] O.Cole. Aprobe: A non-intrusive framework for software instrumenta-
tion, 2004.

[10] D. C. Schmidt, R. Schantz, A. Gokhale, and J. Loyall. Middleware r&d
challenges for distributed real-time and embedded systems. In ACM
SIGBED Rev., pages 6–12, April 2004.

[11] B. Sridharan, B. Dasarathy, and A. P. Mathur. On building non-intrusive
performance instrumentation blocks for corba-based distributed systems.
In Proc. IEEE Int. Computer Performance and Dependability Symp.
IPDS 2000, pages 139–143, 2000.

[12] A. Srivastava and A. Eustace. Atom: A system for building customized
program analysis tools. In ACM SIGPLAN 94 Conference on Program-
ming Language Design and Implementation, pages 196–205, 1994.

[13] G.-R. Uh, R. Cohn, B. Yadavalli, R. Peri, and R. Ayyagari. Analyzing
dynamic binary instrumentation overhead. In In WBIA Workshop at
ASPLOS, 2006.

[14] S. Wallace and K. Hazelwood. Superpin: Parallelizing dynamic in-
strumentation for real-time performance. In Proc. Int. Symp. Code
Generation and Optimization CGO ’07, pages 209–220, 2007.

