Using Component-based Middleware to Design and
Implement Data Distribution Service (DDS)
Systems

Dennis Feiock and James H. Hill
Dept. of Computer and Information Science
Indiana University-Purdue University Indianapolis
Indianapolis, IN USA
Email: dfeiock@iupui.edu, hillj@cs.iupui.edu

Abstract—This short paper presents a framework named
integrated CCM (iCCM) for integrating DDS into the CORBA
Component Model (CCM). The goal of iCCM is (1) to promote
reuse as opposed to reinvention without compromising perfor-
mance; (2) reduce deployment and configuration complexities
associated with DDS; and (3) to allow DRE system developers
to focus more on the business-logic of the application instead of
low-level implementation details.

I. INTRODUCTION

Enterprise distributed real-time and embedded (DRE) sys-
tems are increasing in both size and complexity [5]. Because of
such advancements, traditional abstractions for implementing
such systems are no longer sufficient. For example, client-
server middleware, such as the Common Object Request Bro-
ker Architecture (CORBA) [10], was the de facto standard for
implementing enterprise DRE systems. Because of emerging
application domains and their problem space, it is now hard
to use a one-fit-all-solution approach [7].

The Data Distribution Services (DDS) [9] is one such exam-
ple of an emerging standard for implementing enterprise DRE
systems. In particular, DDS is used to implement publisher-
subscriber enterprise DRE systems. This is because traditional
approaches, such as the client-server model realized by tra-
ditional CORBA, did not provide “easy to use” abstractions
for this application domain. Instead, DRE system developers
were using “homegrown” solutions that were plagued by
many shortcomings experienced before client-server middle-
ware emerged. Moreover, it resulted in re-invention of core-
intellect within this domain.

Although DDS is improving development concerns of
publisher-subscriber enterprise DRE systems, its current de-
velopment model requires system developers to interact with
low-level abstractions. For example, DRE system developers
must manually manage subscriptions and must manually con-
figure the publishers and subscribers. There have be proposed
solutions for improving DDS’s programming model [11] and
using models to configure DDS application [4], but there
is still disconnect between the programming model and the

This work was sponsored in part by the Australian Defense Science and
Technology Organization (DSTO).

configuration model, and the solutions are ad hoc or re-
quire modification to an existing standard. In essence, DDS
is experiencing the same “growing pains” that client-server
middleware (i.e., CORBA) experienced when it first appeared
on the scene [3].

Although traditional middleware experienced the same dif-
ficulties that DDS is currently experiencing, the client-server
programming model was able to overcome its limitations
by increasing programming level-of-abstraction. For example,
the component-based middleware [6] provided a solution
that addressed many shortcomings of the traditional client-
server programming model. Instead of wrestling with low-
level implementation details, the component model allowed
DRE system developers to focus mainly on the business-logic
of the application. Concerns that were traditionally handled by
the DRE system developer, such as deployment, configuration,
lifecycle management, were now handled by the component
middleware—and easily configurable.

This short paper therefore presents a framework for increas-
ing the level-of-abstraction of DDS’s programming model. The
main contributions of this paper are as follows:

e It presents integrated CCM (iCCM)—a framework for
integrating DDS into the CORBA Component Model
(CCM) [10], which is a standard-based programming
model for implementing component-based DRE systems;

o It is the first paper, to the best of the authors knowl-
edge, on a systematic approach for integrating DDS
into component-based middleware without requiring any
modifications to either the CCM or DDS specifications;

o It discusses how the Data Quality Modeling Language
(DOML) [4], which is a domain-specific modeling lan-
guage for configuring DDS applications, was extended
to support a component-based design methodology; and

Paper organization. The remainder of this paper is orga-
nized as follows: Section II discusses iCCM and its integration
with DDS; Section III compares iCCM to other related works;
and Section IV provides concluding remarks and lessons
learned.

II. THE DESIGN AND FUNCTIONALITY OF ICCM
A. Integrating DDS into CCM

To get a better understanding of how DDS can be integrated
into CCM, it is first necessary to understand the structure of
CCM, and how components send events to each other.

1 module Components {

2 interface EventConsumerBase {

3 void push_event (in EventBase evt)
4 raises (BadEventType);

5 }s

6 };

Listing 1. The interface definition for a CCM event consumer.

Listing 1 shows the IDL for the EventConsumerBase,
which is the object used to send events to other components.
As shown in this listing, the interface contains a single method
push_event. This method is invoked by one component
whenever it needs to send an event to another component.

In order to integrate DDS into CCM, it is necessary to
first extend this definition of an EventConsumerBase
with constructs for establishing a DDS connection (i.e., the
publisher and subscriber communicate on the correct topic).
The data type can easily be determined by the concrete event
type. The topic, however, must be determined by either the
publisher or subscriber.

1 module Components {
2 module DDS {

3 /// Extension interface for DDS.

4 interface EventConsumer :

5 :: Components :: EventConsumerBase {

6 void add_topic (in string topic_name);

7 void remove_topic (in string topic_name);
8 }s

9

0

}s
}

Listing 2.

—_

The extended version of a CCM event consumer for DDS.

Listing 2 shows the extended version of the event consumer
for DDS with methods for adding and removing topics by
name. In this design, the event consumer is equivalent of
a DDS subscriber. We call this design publisher-oriented
because the publisher determines the connection details.

Transforming DDS events to CCM events. In CCM, com-
ponents can use event types to communicate with each other.
This is illustrated in Listing 1 where the push_event ()
method takes an EventBase as its only parameter. In
DDS, however, events are not defined as event types, but as
structures. Moreover, events in DDS have keys, which DDS
implementations use to help with data management.

One of the major challenges when providing a standard
method for integrating DDS into CCM is transforming events
between the two technologies. If done incorrectly, systems
implemented using iCCM will pay a performance penalty, e.g.,
the tower-of-babel software anti-pattern [13]. Although this is
a concern, it is possible to leverage the fact that both DDS and
CCM use the same underlying platform-specific model [8]. Tt
is therefore possible to define a CCM event in terms of an
DDS event.

1 // StocklInfo . idl

2 module Example {
3 struct StockInfo {

4 string symbol;
5 unsigned long open, high, close;
6 }
7
8 // define the DDS key for this message
9 #pragma keylist StockInfo symbol
10 ;
Listing 3. An OpenSplice DDS event for publishing stock information.

For example, Listing 3 shows a stock event in OpenSplice
(www.opensplice.org), which is an open-source implementa-
tion of DDS. Likewise, Listing 4 shows the equivalent of a
CCM event in iCCM for the DDS event illustrated in Listing 3.
As shown in Listing 4, an iCCM event replicates the data
members defined for the target DDS event. By encapsulating
the DDS events in the CCM event, DRE system developers
are able to set the DDS event values directly. This alleviates
the need for iCCM to physically translate the CCM event to
a DDS event (or message) when the event is being published.

// StockInfoEvent. idl

1

2 module Example {

3 // This event type is a wrapper for a DDS event.
4 eventtype StockInfoEvent{

5 public string symbol;

6 public unsigned long open, high, close;

7 ;

8 1

Listing 4. CCM version of the DDS event from Listing 3.

Events received by a DDS data reader must also be trans-
formed into a CCM event before the CCM event can be
pushed to the component’s implementation. This also presents
an opportunity to transform the event, and pay a performance
penalty. To overcome this design challenge, iCCM extends the
CCM event class to read a DDS event. Listing 5 illustrates the
DDS event wrapper class.

namespace Example

1

2

3 class StockInfoEventUpcall

4 public virtual StockInfoEvent,

5 public virtual ::CORBA::DefaultValueRefCountBase
6

7 public:

8 StockInfoEventUpcall (StockInfo & dds_event)
9 dds_event (dds_event) { }

10

11 virtual void symbol (char x val) {

12 this—dds_event_.symbol = val;

13 }

14

15 virtual void symbol (const char x val) {

16 this—>dds_event_.symbol = CORBA:: string_dup (val);
17 }

18

19 virtual void symbol (const ::CORBA:: String_var & val) {
20 ::CORBA:: String_var dup = val;

21 this—dds_event_.symbol = dup._retn ();

22

23

24 virtual const char % symbol (void) const {
25 return this—>dds_event_.symbol.in ();

26 }
27
28 //
29
30 private:
31 // The contained DDS event object
32 StockInfo & dds_event_;
33 }
34

Listing 5. iCCM’s wrapper that transforms a CCM event to a DDS event.

A wrapper class is generated for each eventtype specified in
the IDL. The wrapper class has a single member variable that
is a reference to the DDS event recently read from the DDS
data reader. This means that the event for this wrapper must be
set at construction time. Finally, the wrapper class implements
the CCM getters setters for all data members, which provides
the component with access to the encapsulated events. This
means that it is possible for a component to receive a DDS
event, and resend the same event (or make changes to the
existing data) without making a deep copy of the data.

Lastly, the downcall event wrapper class is similar to the
upcall event wrapper class illustrated in Listing 5. The main
different, however, is instead of storing a reference to an
existing DDS event, the downcall wrapper class statically
declares a DDS event internally. Similar to the DDS upcall
event wrapper class, the implementation of the event’s methods
are delegated to the internal DDS event.

Private vs. non-private topics. As discussed above, iCCM
uses publisher-oriented connections. Because topics are deter-
mined by the publisher, iCCM suppors to kinds of topics:
private and non-private. Private topics are topics that are
bound to a specific component. Non-private topics are those
that are accessible by any component’s event ports. In iCCM,
the name of the input event port maps to the topic’s name. If
the topic name is prefixed with the component instance name,
which is unique across the entire system, then the topic is
considered a private topic. If no such prefix exists, then the
topic is considered a non-private topic. By default, all topics in
iCCM are non-private topics unless overridden at deployment
and configuration time (see Section II-B).

Implementing a DDS component using iCCM. The dis-
cussion above pertained to how iCCM integrates DDS into
CCM, which takes place at the component servant level. The
component servant in CCM is typically auto-generated from
IDL. Keeping inline with these expectations, iCCM auto-
generates a CCM servant that can send DDS events. The
auto-generated servant uses the iCCM abstractions previously
discussed.

module Example {
component StockDistributor {
publishes StockInfo stock_notify;

&

component StockBroker {
consumes StockInfo stock_info;

1
2
3
4
5
6
7
8 }s
9 }

Listing 6. CCM IDL specification for two components.

Because the component servant is auto-generated, devel-
opers are responsible for implementing only the component
implementation (in addition to the component’s specification
in IDL). For example, Listing 6 presents the IDL specification
for two components that either send (publish) or receive (sub-
scribe to) an event. iCCM uses the specification in Listing 6
to auto-generate the stubs, skeleton, and component servant.
1

2 void StockDistributor_Impl::auto_notify_thread (void) {
3 // create a new event.

4 ::Example :: StockNotifyEvent_var ev (

5 this—>ctx_—>new_stock_notify_event ());
6

7 // Set the events values.

8 ev—>symbol (”"GOOG”); ev—>open (578);

9 ev—>high (580); ev—>low (573);

10

11 // Send the event. The underlying servant will send
12 // this event as a DDS message!

13 this—>ctx_—>push_stock_notify (ev);
14}

Listing 7. Code snippet of the StockDistributor CCM component that

publishes the DDS StockInfo message.

Listing 7 shows a portion of the StockDistributor
component implementation that DRE system developers must
implement based on the IDL presented in Listing 6. As shown
in this example, a component’s implementation is the same as
a standard CCM component’s implementation.

B. Deploying and Configuring iCCM Systems

To assist with the deployment and configuration phase,
iCCM uses the Deployment And Configuration Engine
(DAnCE) [2], which is an open-source tools that implements
the OMG D&C specification [12], to deploy its DDS-based
components. The iCCM components “as is” can be deployed
by DAnCE without modifying DAnCE. To configue DDS QoS
parameters, however, iCCM extends DAnCE’s deployment and
configuration handlers.

Domain
* DomainParticipantFactoryQos entity_factory

Fig. 1. Metamodel for iCCM’s domain specification.

To configure the DDS QoS parameters, iCCM uses two
different XML specifications based on the DDS QoS data
model. The composition of the XML specification is also
inline with iCCM’s component-based design. The first spec-
ification is the domain specification, which is illustrated in
Figure 1. The domain model is simple in that it determines if
domain entities, such as DDS participants, are auto-enabled at
creation time. The domain specification is applied by adding
an iCCM-specific attribute to the locality manager with the
name of DDSQoS, and setting its value to the location of the
domain specification file.

The second specification is called the participant specifica-
tion, which is shown in Figure 2. The participant specification
configures different QoS parameters for DDS entities of a
DDS participant, such as data reader and writer partitions,
participant QoS, and data reader and writer QoS. Because the
design is publisher-oriented, the data writer determines the
topic’s QoS if it is a non-private topic. If the topic is a non-
private topic, then its QoS is determined at the participant-level
(i.e., the entity that creates the topic). Finally, the participant
specification is applied by setting a component instance’s
attribute named DDSQoS to the location of the participant
specification file. iCCM’s configuration handlers then use the
specified file to configure the entities accordingly.

Participant
+ EntityFactoryQosPolicy entity_factory
* SchedulingQosPolicy watchdog_scheduling
* SchedulingQosPolicy listener_scheduling

-

* *
Publisher Subscriber
= String partition * String partition
* PresentationQosPolicy presentation * PresentationQosPolicy presentation
+ EntityFactoryQosPolicy entity_factory « EntityFactoryQosPolicy entity_factory
* *
DataWriter DataReader
+ DurabilityQosPolicy durability + DurabilityQosPolicy durability
+ DeadlineQosPolicy deadline DeadlineQosPolicy deadline
R/ LR/
* OwnershipQosPolicy ownership * OwnershipQosPolicy ownership
-
T
I 0.1 1
Topic :
+ DurabilityQosPolicy durability 1
+ DeadlineQosPolicy deadline e———— - == il

L/

* OwnershipQosPolicy ownership

Fig. 2. Metamodel for iCCM’s participant specification.

Enforcing D&C semantics. To assist with valid construc-
tion of the domain and participant specification and enforc-
ing semantics, we first leverage the Platform Independent
Component Modeling Language (PICML) [1]. PICML is used
to model the systems’ composition. The resultant model is
then transformed to an extended the version of the Data QoS
Modeling Language (DQML) [4]. The extension of DSML was
necessary because its current version uses a flat data model that
is consistent with the traditional approach for implementing
DDS applications. iCCM, however, uses a component-based
approach. The metamodel for the extended version of DQML
was originally shown in Figure 1 and Figure 2.

(creates)

@\ (configures)

e ™
Extended

P DQML
- model
(generates) AN
- N
s Y

Legend

manual ———> Participant

spec.

automatic = === = >

Domain
spec.

Fig. 3. iCCM’s workflow for modeling the deployment and configuration of
its applications.

Using the workflow shown in Figure 3, DRE system de-
velopers for model their component-based system in PICML.
Then using the PICML model, model intepreters automatically
transformed into a DQML model as where each component
instance in PICML is mapped to a DDS domain participant.
Each event port is mapped to either a data reader or data writer
depending on the event port semantics. The developer then sets
the each entities QoS in the auto-generated DQML model.
Finally, the DQML model is transformed to corresponding
domain and participant specification file.

III. RELATED WORKS

DDS4CCM [11] uses a gateway approach to integrating
DDS into CCM This means that events are sent to a mediator
and transformed and then transformed into DDS messages.
iCCM’s approach differs from the DDS4CCM approach in
that it (1) performs event transformation in the component’s
servant, as opposed to in another object; and (2) does not
require modifications to the existing CCM specification. For
example, the DDS4CCM approach is only possible because of
extensions made to the existing CORBA specification, such as
adding new keywords to IDL.

IV. CONCLUDING REMARKS

This short paper presented integrated CCM (iCCM), which
is a method for integrating DDS into CCM. By integrating
DDS into CCM, DRE system developers are able to focus on
the system’s business-logic instead of wrestling with low level
implementation details. Although iCCM is able to abstract
away the low-level complexities of DDS, there is still much
work to be done to realize a optimized and lightweight solution
that allows DRE system developers to leverage all aspects
of DDS via iCCM. iCCM is currently integrated into the
CUTS system execution modeling tool. It is freely available
for download from the following location: cuts.cs.iupui.edu.

REFERENCES

[1] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and
D. C. Schmidt. A Platform-Independent Component Modeling Language
for Distributed Real-Time and Embedded Systems. In RTAS ’05:
Proceedings of the 11th IEEE Real Time on Embedded Technology and
Applications Symposium, pages 190-199, Washington, DC, USA, 2005.
IEEE Computer Society.

[2] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and A. Gokhale.
DAnCE: A QoS-enabled Component Deployment and Configuration
Engine. In Proceedings of the 3rd Working Conference on Component
Deployment (CD 2005), pages 67-82, Grenoble, France, Nov. 2005.

[3] M. Henning. The Rise and Fall of CORBA. Queue, 4(5):28-34, 2006.

[4] J. Hoffert, D. Schmidt, and A. Gokhale. A QoS Policy Configuration
Modeling Language for Publish/Subscribe Middleware Platforms. In
Proceedings of International Conference on Distributed Event-Based
Systems (DEBS), pages 140-145, Toronto, Canada, June 2007.

[5] S. E. Institute. Ultra-Large-Scale Systems: Software Challenge of the
Future. Technical report, Carnegie Mellon University, Pittsburgh, PA,
USA, June 2006.

[6] Institute for Software Integrated Systems. Component-Integrated ACE
ORB (CIAO). www.dre.vanderbilt.edu/CIAO, Vanderbilt University.

[71 A. M. Memon, A. Porter, and D. Scmidt. Feedback-driven design of
distributed real-time and embedded component middleware via model-
integrated computing and distributed continuous quality assurance. In
Proceedings of The National Science Foundation Invitational Workshop
— Science of Design: Software-Intensive Systems, nov 2003.

[8] Object Management Group. Model Driven Architecture (MDA) Guide
V1.0.1, OMG Document omg/03-06-01 edition, June 2001.

[9] Object Management Group. Data Distribution Service for Real-time

Systems Specification, 1.2 edition, Jan. 2007.

Object Management Group. The Common Object Request Broker:

Architecture and Specification Version 3.1, Part 3: CORBA Component

Model, OMG Document formal/2008-01-08 edition, Jan. 2008.

Object Management Group. DDS for Lightweight CCM (DDS4CCM),

ptc/2009-10-25 edition, February 2009.

OMG. Deployment and Configuration of Component-based Distributed

Applications, v4.0, Document formal/2006-04-02 edition, Apr. 2006.

C. Smith and L. Williams. New Software Performance Antipatterns:

More Ways to Shoot Yourself in the Foot. In CMG, volume 2, pages

667-674, Dallas, TX, 2003.

[10]

(11]
[12]

[13]

